
AD-A259 002
AfIT/GCE/ENG/92D-12

AN INTELLIGENT REAL-TIME SYSTEM
ARCHITECTURE IMPLEMENTED IN ADA

THESISDTIC
Michael Anthony Whelan JAN 081993 |

Captain, USAF o 0

AFIT/GCE/ENG/92D-12 E D

93-00145

Approved for public release; distribution unlimited

93 1 4 12.7

AFIT/GCE/ENG/92D-12

AN INTELLIGENT REAL-TIME

SYSTEM ARCHITECTURE IMPLEMENTED IN ADA

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University Accesion For

In Partial Fulfillment of the NTIS CRA&I
DTIC TAB

Requirements for the Degree of Unannouiced 0
Justification

Master of Science in Computer Engineering
By
Distribution/

Availability Codes

Avail and/or
Michael Anthony Whelan, A.A.S., B.S.E.E. Dist Special

Captain, USAF

December, 1992

Approved for public release; distribution unlimited

Preface

The research conducted here was motivated by my experiences as a project engineer for the Pilot's

Associate program. During the development phases of the program, most of the effort focused on

developing the knowledge bases necessary to build a Pilot's Associate with little attention paid to the

environment in which such a system would eventually be deployed. I decided to address the issues of real-

time and Ada in this thesis to help smooth future efforts to transition "intelligent systems" into real-time

environments. I believe the experience and knowledge gained while I pursued that goal to be invaluable.

I am indebted to a number of faculty at AFIT for the knowledge I gained while attending there. First

is my thesis advisor, Major Gregg Gunsch, who taught me the meaning of the word "scope". He also

provided valuable feedback that allowed this document to at least be readable. Second is Dr. Gary Lamont

whose algorithms class taught me more about "computer science" than all other computer classes

combined. Major Eric Christensen assisted me in solving some tricky Ada problems I had given up on as

un-solvable. In addition, all my fellow students provided the valuable moral support that allowed me to

continue "pressing on".

My most heart felt thanks is reserved for my family. First for my wife, Mary, who ran the household

without me and suffered through quite a few "do nothing" weekends. Second are my children, Shaun and

Shaunna, who now have a daddy back. Without their understanding and love, I could never have

completed this research.

Michael Anthony Whelan

ii

Table of Contents

Page

Preface ... ii

Table of Contents .. iii

List of Figures ... vii

List of Tables .. x

Abstract ... xi

I. Introduction ... 1-1

1.1. Background ... 1-1

1.2. Problem Statem ent .. 1-3

1.3. Assum ptions .. 1-4

1.4. Scope .. 1-4

1.5. Approach ... 1-4

1.6. Sum m ary ... 1-5

1.7. Thesis Overview ... 1-6

H. Background .. 2-1

2.1. Traditional Real-Tine System s .. 2-1

2.2. Scheduling Im precise Computations ... 2-4

2.3. Intelligent Real-Tim e System s .. 2-7

2.3.1. Pilot's Associate Program .. 2-7
2.3.2. Lockheed's Pilot's Associate .. 2-8
2.3.3. M cDonnell Aircraft's Pilot's Associate .. 2-10
2.3.4. Adaptive Suspension Vehicle .. 2-14

2.4. Common Intelligent Real-Time System Components .. 2-18

2.5. Schedulable Task Types ... 2-19

2.6. Sum m ary ... 2-20

iiihI_ _ _ _ _ _ ____

Ml . Design Approaches, Assum ptions, and Key Decisions ... 3-1

3.1. Perform ance M easures .. 3-1

3.2. Design Considerations .. 3-2

3.3. Design Assum ptions ... 3-3

3.4. Possible Design Approaches ... 3-5

3.4.1. Modifying CLIPS/Ada Design Approach ... 3-5

3.4.2. Controllable Real-Tune Task Manager Approach 3-8
3.5. Design Problem Statem ent .. 3-9

3.6. Key Design Decisions ... 3-9

3.7. Design Approach Sum mary .. 3-10

IV. An Intelligent Real-Tim e System Architecture .. 4-1

4.1. Top Level Design .. 4-1

4.2. Environment M odel .. 4-2

4.3. Systern M odel ... 4-3

4.4. 1/O Process .. 4-4

4.5. Reasoning Process .. 4-4

4.6. Task M anager .. 4-5

4.6.1. Periodic Task Scheduling .. 4-6

4.6.2. Non-Periodic Task Scheduling .. 4-10
4.7. Architecture Sum mary .. 4-13

V . Feasibility Demonstration System .. 5-1

5.1. General Implem entation Issues ... 5-1

5.1.1. Ada Com piler Choice .. 5-2
5.1.2. Memory Management Issues and Impacts .. 5-2
5.1.3. Dynamic Task Creation and Control ... 5-3
5.1.4. Top Level Priority Assignm ents .. 5-6

5.2. System and Environment M odel .. 5-8

5.3. 1/O Process .. 5-8

5.4. Reasoning Process Im plementation .. 5-8

5.5. Task M anager Implem entation Details ... 5-11

5.5.1. Task M anager Data Structures .. 5-11
5.5.2. Task States and State Transitions .. 5-13

5.5.2.1. Periodic Task State Transitions .. 5-14
5.5.2.2. Non-Periodic Task State Transitions 5-15

5.5.3. Periodic Task Priority Assignm ents .. 5-18
5.5.4. Task M anager Entry Call Descriptions ... 5-18

5.5.4.1. Add_Task Entry Call ... 5-19

iv

5.5.4.2. ModifyTask Entry Call .. 5-20

5.5.4.3. RemoveTask Entry Call ... 5-23
5.5.4.4. ChangePeriodicUtilization Entry Call 5-24

5.5.4.5. TaskComplete Entry Call ... 5-24

5.5.4.6. Task Dispatcher .. 5-25
5.6. Implementation Summary .. 5-26

VL Results and Analysis ... 6-1

6.1. Architecture Feasibility .. 6-1

6.2. Dynamic Task Creation and Control .. 6-3

6.2.1. Dynamic Task Creation Results .. 6-5
6.3. Task Scheduling Evaluation ... 6-5

6.4. Code Complexity Analysis ... 6-7

6.5. Results Sumnary .. 6-10

VII. Conclusion .. 7-1

7.1. Summary ... 7-1

7.2. Recommendations ... 7-2

7.2.1. Task Manager Recommendations ... 7-3
7.2.2. Other Architecture Components Recommendations 7-3
7.2.3. Implementation and Development Recommendations 7-5

7.3. Thesis Summary .. 7-5

Appendix A. Test Results ... A-I

A.1. Scheduling Overhead Timing Results ... A-I

A.2. Schedules Produced ... A-10

Appendix B. Periodic Priority Assignment Methods Investigated B-i

B. 1. Periodic Priority Assignment Problem and Potential Solution Methods B-1

B.I.1. Periodic Priorities Normal Distribution Method B-2
B. 1.2. Periodic Priorities Linear Method .. B-3
B. 1.3. Periodic Priorities Static Method ... B-4

B.2. Evaluation of Priority Assignment Methods ... B-5

Appendix C. IRTS Demonstration System User's Guide ... C-I

C. 1 System Requirements and Compilation Order ... C-1

C.2 Source Code ... C-4

v

Bibliography .. BeB-1

Vita .. VITA-1

vi

List of Figures

Figure Page

Figure 2.1 Overall Concept of the Pilot's Associate .. 2-9

Figure 2.2. Reasoning Process Diagram ... 2-12

Figure 2.3 McAir's Top Level Architecture ... 2-13

Figure 2.4 McAir's Module Internal Architecture .. 2-14

Figure 2.5 ASV Planning 3and Control Architecture [Payton, 1991:551 2-16

Figure 2.6 ASV Plan Generation [Payton, 1991:551 .. 2-17

Figure 3.1 CLIPS Rule Definition Structure [CLIPSRefMan, 1991a:27] 3-6

Figure 3.2 Modified CLIPS Rule Structure ... 3-7

Figure 4.1 Top Level Design Diagram .. 4-2

Figure 4.2 Some Calculable Periodic Utilizations ... 4-9

Figure 4.3 Predicting Non-Periodic Task Actual Durations .. 4-12

Figure 5.1 Package Structure of Tasks ... 5-4

Figure 5.2 Normal and Importance Ordered Priority Ranges .. 5-7

Figure 5.3 IRTS Ada Task Structure Diagram .. 5-10

Figure 5.4 Task Control Block Ada Record Type Declaration .. 5-13

Figure 5.5 Periodic Task State Transition Diagram ... 5-15

Figure 5.6 Non-Periodic Task State Transition Diagram .. 5-16

Figure 6.1 Example Periodic Task Manager Overhead versus Task Duration 6-2

Figure 6.2 Example Non-Periodic Task Manager Overhead versus Task Duration 6-2

Figure 6.3 Summary of Periodic Task Control Times ... 6-4

Figure 6.4 Summary of Non-Periodic Task Control Times ... 6-4

vii

Figure 6.5 Example of Execution Priority Inversion ... 6-8

Figure A. 1 Periodic Tasks Add Tune, New Task Instantiated .. A-2

Figure A.2 Periodic Tasks Add Time, Task Shell Reused ... A-3

Figure A.3 Periodic Tasks Modify Time, Period and Importance Changed A-4

Figure A.4 Periodic Tasks Remove Time .. A-5

Figure A.5 Non-Periodic Tasks Add Time, New Task Instantiated .. A-6

Figure A.6 Non-Periodic Tasks Add Time, Task Shell Reused .. A-7

Figure A.7 Non-Periodic Tasks Modify Time, Deadline and Importance Changed A-8

Figure A.8 Non-Periodic Tasks Remove Time .. A-9

Figure B. 1 Example Periods of a Task Set .. B-2

Figure B.2 Periodic Priorities Using Normal Distribution .. B-3

Figure B.3 Periodic Priorities Using Linear Method ... B4

Figure B.4 Periodic Priorities Using Static Method ... B-5

Figure B.5 Period vs. Priority, Static Method, All Optional ... B-8

Figure B1.5 Tasks per Priority, Static Mudiod, All Optional .. B-8

Figure B.7 Period vs. Priority, Static Method, Some Mandatory .. B-9

Figure B.8 Tasks per Priority, Static Method, Some Mandatory ... 3-9

Figure B.9 Period vs. Priority, Linear Method, All Optional .. B-10

Figure B. 10 Tasks per Priority, Linear Method, All Optional .. B-10

Figure B. II Period vs. Priority, Linear Method, Some Mandatory B-i1

Figure B. 12 Tasks per Priority, Linear Method, Some Mandatory B-11

Figure B. 13 Period vs. Priority, Normal Distribution Method, All Optional B-12

Figure B. 14 Tasks per Priority, Normal Distribution Method, All Optional B- 12

Figure B.15 Period vs. Priority, Normal Distribution Method, Some Mandatory B-13

Figure B.16 Tasks per Priority, Normal Distribution Method, Some Mandatory B-13

Figure B.17 Period vs. Priority, New Method, All Optional ... B-14

viii

Figure B.I8 Tasks per Priority, New Method. All Optional .. B-14

Figure B. 19 Period vs. Priority, New Method. Some Mandatory .. B- 15

Figure B.20 Tasks per Priority, New Method, Some Mandatory B-15

Figure C. I Recomnended Directory Structure for IRTS Demonstration System C-I

ix

List of Tables

Table Page

Table 4.1. Example Periodic Task Set ... 4-7

Table 5.1 Effects of Modifying Tasks and Periodic Utilization .. 5-21

Table 5.2 Allowed Modify Operations by Task Type and State .. 5-22

Table 6.1 T'ime Complexity of Procedures Used By the Task Manager 6-9

Table 6.2 Tune Complexity of Task Manager Entry Calls .. 6-9

Table A.I Printout Status Number to State Name Translation .. A-13

x

AFrF/GCE/ENG/92D-

Abstract

This research begins the process of transitioning real-time intelligent laboratory demonstration

programs into the congressionally mandated implementatior language Ada. The investigation objective is

to analyze the characteristics of real-time intelligent systems and then to design and implement an software

architecture capable of supporting the identified characteristics. By beginning to address the specific needs

of real-time intelligent systems as implemented in Ada, the path from laboratory demonstration to fielded

system is further illuminated.

Conventional real-time systems are fully deterministic allowing for off-line, optimal, task scheduling

under all circumstances. Real-time intelligent systems add non-deterministic task execution times and non-

deterministic task sets for scheduling purposes. Non-deterministic task sets force intelligent real-time

systems to trade-off execution time with solution quality during rmn-time and perform dynamic task

scheduling. Four basic design considerations addressing those tradeoffs have been identified: control

reasoning, focus of attention, parallelism, and algorithm efficacy.

Non-real-time intelligent systems contain an environment sensor, a model of the environment, a

reasoning process, and a large collection of procedural processes. Real-time intelligent systems add to

these a model of the real-time system's behavior, and a real-time task scheduler. In addition, the reasoning

process is augmented with a metaplanner to reason about timing issues using the system's behavioral

model. Additionally, real-time deadlines force the inclusion of pluralistic solution methods in the

intelligent system to allow multiple responses ranging from reactive to fully reasoned and calculated.

xi

AN INTELLIGENT REAL-TIME

SYSTEM ARCHITECTURE IMPLEMENTED IN ADA

I. Introduction

I feel compelled to point out the obvious: a demonstration of some capability (in
AI or other technology) on one restricted instance of a general class of problems is
important as an existence proof of a technology, but it does not satisfy the general need
for a technology that will be able to produce solutions for all unrestricted problems in that
class. It is in this sense that I believe that Al will require much basic and engineering
research from DoD and other sources for many years to come. Given the utility derived
from the relatively modest level of today's technology, I believe that even incremental
gains here will prove of phenomenal value to DoD and the economy in general.
[Simpson, 1988:1]

Sec. 8092. Notwithstanding any other provisions of law, after June 1, 1991,
where cost effective, all Department of Defense software shall be written in the
programming language Ada, in the absence of special exemption by an official
designated by the Secretary of Defense [Public Law 101-511].

If you believe the first quotation, then clearly, DoD use of Artificial Intelligence (Al) techniques

requires a method to create and field Al systems in Ada. Additionally, the relatively new AI field of Real-

Time Intelligent Systems is subject to the same congressionally mandated use of the Ada programming

language. Thus Real-Time Intelligent Systems research must begin to focus some attention on

implementation issues associated with Ada. The research conducted here attempts to do just that:

investigate some implementation issues associated with intelligent real-time systems in Ada. By

integrating three broad areas of DoD relevant research; artificial intelligence, real-time systems, and Ada,

this research incrementally advances the field of AI and assists the DoD in complying with the

congressionally mandated use of the Ada programming language.

1.1. Background

To understand the direction this thesis investigation is taking, it is necessary to examine a number of

areas of computer science. These areas include expert systems, blackboard systems, associate systems, and

real-time systems. The first requirement, however, is a simple definition of what is meant by the term

I-I

'intelligent real-time systems'. For the purposes of this thesis, an intelligent real-time system (IRTS) is

defined as a computer control system which can perform some initially specified function and which can

1) adapt its control strategy based upon changes in its operating environment,

2) trade off the quality of a solution against the computational time required to calculate a solution

in order to adapt to changes in its operating environment, and

3) guarantee the response times of some set of tasks.

Expert systems are one class of intelligent systems. An expert system tries to perform a given task in

a method that is comparable to a human expert. Typically an expert system consists of explicitly

represented domain knowledge (in the form of a knowledge base) and an inference engine [Klahr, 1986:28;

CLIPS-Ada, 1991] [CLIPSRefMan, 1991]. The knowledge base consists of English-like rules of the form:

If A and B then C. The inference engine (sometimes called a monitor) arranges the rules for execution and

executes them. The knowledge base and inference engine are separate and distinct entities. By adding or

deleting knowledge (rules) in the knowledge base, the expert system's level of expertise can be altered.

Changing the knowledge base altogether results in an expert in another domain.

Blackboard systems were developed to allow for multiple cooperating expert systems [Nii, 1989:13-

821. The analogy generally used to describe its operation is a group of experts standing around a

blackboard trying to solve a multi-disciplinary problem. Information is placed on the blackboard and each

expert responds by providing partial solutions from their particular field of expertise. Eventually, the group

may solve the problem that no single expert could.

A blackboard system consists of a global database and a collection of knowledge sources (KS) that

act upon the data in the global database. Each of the KS's contributes to the problem solving process by

identifying goals, contributing partial solutions, or evaluating partial solutions. Eventually, as each of the

KS's responds to changes in the blackboard data, a satisfactory solution is reached. The two types of

knowledge sources are domain and control. Domain KS's operate on a specific problem and control KS's

help in deciding which domain KS's are appropriate to execute.

Associate Systems are an area in AI that have received significant DoD attention and funding.

Associate Systems help operators of planes, helicopters, tanks, and submarines cope with the avalanche of

1-2

data available to them and make effective decisions to accomplish their mission [Aldern, 19901 [Lambert,

1990]. One of the most heavily funded systems in this category is the DARPA/USAF Pilot's Associate.

(Others include Day/Night Adverse Weather Pilotage System, Submarine Operator's Associate System,

Rotocraft Pilot's Associate, and a Special Operations Forces spin-off effort from the Pilot's Associate

program). To date, each of these systems has used a collection of rule-based approaches and blackboard

systems. Each program has also developed a methodology to acquire the appropriate domain knowledge

and represent that knowledge in a form the system implementor can use [Alderm, 1991:4-1 to 4-20]. All of

these systems so far are proof-of-concept systems. One key concern is the requirement to operate in "real-

time". Although research is moving in this direction [Aldem, 1991] [Lambert, 1990] [Dodhiawala, 1988]

[Payton, 199 11, none currently guarantee operation in real-time and none are implemented in Ada.

Real-time systems usually mean fast systems that operate on temporally valid data. Both the term

fast and real-time are problem specific and precise definitions are only relevant for the specified domain.

For example, a real-time system used to monitor continental drift may only be required to take and record

measurement samples once a month. On the other end of the spectrum, a space shuttle flight control system

may require that hundreds of sensors be checked in milliseconds. The point is that real-time systems must

operate fast enough for the particular application. Generally, this requirement is stated by saying that the

system's response must be calculated by the required deadline, with little said about how to determine what

is the deadline. Thus a intelligent real-time system must exhibit appropriate behavior fast enough in the

chosen domain.

1.2. Problem Statement

Due to funding limitations and program constraints, the concept of dynamically controlling the real-

time performance of an intelligent system was never fully developed in the Pilot's Associate program.

Additionally, both contracted development teams used implementation languages other than Ada. Thus, to

date no large intelligent real-time system has been developed and implemented in Ada, and no analysis of

such a system performed. This thesis effort proposes to investigate issues in the development of such a

system and analyze some of the performance issues raised. By providing a potential design solution, a

feasibility demonstration, and some analysis of its performance, this thesis can have a direct impact on

future real-time, embedded, intelligent DoD systems.

1-3

1.3. Assumptions

This thesis investigation assumes a basic system functional description as outlined in the Pilot's

Associate program [Lambert, 1991] [Lambert, 1990] [Aldern, 1990] [Aldern, 1991]. Thus it is assumed

that there exists a large collection of known procedures or tasks that are required to perform a given

function. In addition, the relationship between these tasks and their impact on the current problems facing

the system can be determined. This mapping of functions and relationships to the current context in which

the system is operating is referred to as a plan/goal graph or task network [Wilensky, 1983] [Smith, 19901.

It is not the goal of this thesis effort to design from scratch an intelligent real-time system. Rather, this

thesis effort investigates the mapping of previous designs to Ada, the addition of components necessary to

overcome deficiencies in the previous designs, and the issues arising out of that mapping and addition of

components.

No effort is made to acquire the knowledge necessary to add 'intelligence' to the system. Instead, a

baseline system similar to the Pilot's Associate is assumed. The goal of this system is not the development

of the knowledge base for such a system, rather it is the mapping of the designed system to Ada and to

investigate the control of such a system. The application of the architecture resulting from this work to a

specific domain is left as future work.

1.4. Scope

This research proposes to examine intelligent real-time systems but is limited primarily to

knowledge based systems acting as the intelligent agents in the system. It is not the intent of this research

to examine the real-time issues associated with other AI software disciplines, nor are hardware issues

addressed. Thus, no effort is being made to consider machine learning, neural networks, genetic

algorithms, or any of the other Al disciplines. Similarly, no effort is made to examine hardware

architectures, chip designs, or memory systems. It is fully expected that areas requiring performance

improvements will be encountered and that these other Al areas and hardware may provide solutions to

those problem areas. It is left as future research to incorporate those AI technologies and hardware into the

framework this thesis is proposing.

1.5. Approach

The approach used in this thesis effort is typical of most research efforts. First, a literature review of

real-time and intelligent real-time systems is conducted. The purpose of the review is to educate myself

1-4

and the reader about the issues affecting both traditional real-time systems and intelligent real-time systems.

Additionally, the literature review exposes problems with current systems and examines some potentially

useful methods of dealing with those problems. Specifically, scheduling real-time tasks using the rate

monotonic scheduling theory and methods of scheduling imprecise computations.

From that review, conclusions are drawn about what constitutes an intelligent real-time system.

Once the constituent parts are identified, an architecture is presented that incorporates each of those parts.

"The component most lacking in current intelligent real-time systems is identified and methods of including

it into an intelligent real-time system architecture is examined.

Next, a feasibility demonstration system is constructed that investigates incorporating a dynamic

real-time task manager into an intelligent real-time system. The feasibility demonstration is constructed to

allow for validation of the concepts developed in this thesis and provide insight into potential problem

areas. It is not offered as an optimal solution tuned for maximum performance.

Next, an analysis of the implemented system's performance is made. Specifically, an analysis of the

dynamic task creation and control strategies is made and the impact of each parameter on system

performance identified and quantified in terms of execution speed, code size, and appropriateness for the

context. Additionally, performance problems are traced to either a flaw in the implementation or perhaps a

more serious flaw in the design.

Finally, an attempt to point the direction of future work in this area is made. Drawing on the results

of the efforts of this thesis, a suggested path of continuing research and development is laid out.

1.6. Summary

This research has four objectives. Listed in order of importance, they are

1) development of an integrated set of Ada data and control structures that allows for the

implementation of an intelligent real-time system and architecture to support such a system,

2) implementation of the developed data and control structures into an intelligent real-time system

and a feasibility demonstration of the developed architecture,

3) an evaluation of the implemented intelligent system architecture to determine the utility of the

design and the overhead necessary to support its run-time computational needs, and

1-5

4) identification and evaluation of some performance metrics useful in evaluating intelligent real-

time systems performance.

1.7. Thesis Overview

This thesis follows the pattern used by most scientific research reports. In Chapter 2, the results of a

literature search are presented. Current knowledge in AI systems, real-time systems, and intelligent control

is examined and issues important to this thesis are identified. Additionally, the common components of

intelligent real-time systems are listed. Chapter 3 addresses some of the possible design approaches for

developing an intelligent real-time system and enumerates the design assumptions. The key design

decisions made are discussed. Chapter 4 presents the intelligent real-time system architecture vision

developed and addresses some of the features that are missing in previous architectures. Chapter 5 provides

a detailed look at the developed feasibility demonstration system. The goal of the feasibility demonstration

is to provide confidence in the potential of the architecture presented in Chapter 4 and allow for concept

testing. Chapter 6 presents the results obtained by testing the feasibility demonstration system and the

impact of those results on the proposed intelligent real-time system architecture. Chapter 7 culminates the

thesis with conclusions and recommendations.

1-6

II. Background

The technology needed to build an intelligent real-time system spans a multitude of engineering

disciplines. Those that are relevant to this thesis include traditional real-time system design, real-time

scheduling algorithms, real-time system design in Ada, knowledge representation, expert systems, associate

systems, blackboard systems, planning, and intelligent control. In order to lay the foundation for

understanding the work presented in this thesis, it is necessary to examine some of the more important

aspects of these related technologies. The following background information covers traditional real-time

systems rate monotonic scheduling, then imprecise computation scheduling, followed by intelligent real-

time systems, and culminating with a description of the components needed to implement intelligent real-

time systems.

2.1. Traditional Real-Time Systems

Sprunt, Sha, and Lehoczky provide a good introduction to real-time system design issues and

algorithms [Sprunt, 1989] [Sprunt, 1990]. They classify tasks based upon the task's deadline and arrival

pattern. Classifications for deadlines are hard and soft. Hard-deadline tasks are defined as "If meeting a

given task's deadline is critical to the system's operation, then the task's deadline is considered to be hard'

[Sprunt, 1990:2]. Soft-deadline tasks are tasks whose deadline is desirable but not absolutely essential for

correct system operation. Additionally, Sprunt and Sha add the category background task for those tasks

without a timing constraint.

Classifications for task arrival rates include periodic and aperiodic. A periodic task is defined by

Sprunt and Sha as a task that arrives at regular, predictable times. Spnmt and Sha include things like sensor

updates or monitoring tasks in this category. Aperiodic tasks are defined to be tasks with irregular arrival

times and result from "the processing requirements of events with nondeterministic request patterns, such

as operator requests" [Sprunt, 1990:2]. Using deadlines and arrival patterns, they essentially divide the

types of real-time tasks into four categories: hard-deadline periodic tasks, soft-deadline aperiodic tasks,

sporadic tasks, and background tasks. Sprunt and Sha define each task type as follows:

Hard-Deadline Periodic Task. A periodic task consists of a sequence of requests
arriving at regular intervals. A periodic task's deadline coincides with the end of its
period.

2-1

* Soft-Deadline Aperiodic Task. An aperiodic task consists of a stream of requests
arriving at irregular intervals. Soft deadline aperiodic tasks typically require a fast
average response time.

. Sporadic Tasks. A sporadic task is an aperiodic task with a hard deadline and a
minimum inter-arrival time (the amount of time between two requests).

0 Background Tasks. A background task has no timing requirements and no particular
arrival pattern. Background tasks are typically assigned the lowest priority in the
system ... [Sprunt, 1990:2]

Systems with hard-deadline periodic tasks can be constructed efficiently using the rate-monotonic

scheduling algorithm [Sha, 1991] [Sha, 1989] [Sprunt, 1989] [Liu, 1973]. This algorithm "assigns

priorities to tasks as a monotonic function of the rate of a (periodic) function" and assumes a priority

driven, preemptive scheduling discipline [Sha, 1991:3]. The rate-monotonic algorithm is the provably

optimal scheduling algorithm for preemptive scheduling of hard-deadline periodic tasks [Sprunt, 1990:2].

The rate monotonic theory provides a simple inequality to determine whether a given set of periodic tasks is

schedulable. Theorem 1 below provides a sufficiency test that ensures all tasks meet their deadlines. For

task sets whose utilization, U(n), exceeds that of (2.1), Theorem 2 below is both a necessary and sufficient

test.

Theorem 1: A set of n independent periodic tasks scheduled by the rate monotonic
algorithm will always meet its deadlines, for all task phasings, if

C + ... + L" < n(2y - 1) - U(n) (2.1)T, T1

where Ci and Ti are the execution times and period of task Ti respectively and U(n) is
the utilization of the task set [Sha, 1989:5].

Theorem 2: A set of n independent periodic tasks scheduled by the rate-monotonic
algorithm will always meet its deadlines, for all task phasings, if and only if

Vi, 1/i!n, m- <1 (2.2)
(kI)e Rij, Ci IT, T[a1

where Ci and Ti are the execution times and period of task Ti respectively and
Ri = I(k,1) I 1 < k < i, I = 1, ... , LTi/TkJ 1. i represents the task to be checked, k
represents the tasks of equal or higher priority, and I represents the scheduling points for
task i [Sha, 1989:5].

In Theorem 1, for large values of n, U(n) converges to 0.69 (In 2). Assuming the worst case scenario where

all tasks are started simultaneously, Theorem 2 checks if each task can complete its execution by its first

2-2

deadlines at each scheduling point before task i's deadline. A scheduling point for a task r is the deadline

of each task with a deadline before z's.

In addition to using a priority driven, preemptive scheduling discipline, Theorems 1 and 2 also

assume, process switching is instantaneous, the tasks account for all the execution (i.e. the operating system

consumes zero time), the tasks do not interact, tasks become ready to execute exactly at the beginning of

their periods and, task deadlines are always at the end of the period. Continuing research is addressing

some of the limitations associated with the assumptions used to develop Theorem 1 and Theorem 2 [Sha,

1991] [Klein, 1990]. First, the effect of non-zero task switching times is addressed by modifying the

execution time of a task, Ci to include context switching times, Cs. In Theorems 1 and 2, the new task

execution time becomes C'i = Ci + 2Cs since the processing context is switched at the beginning and end of

each task's execution.

Task synchronization was addressed by the development of the priority ceiling protocol. "The

priority ceiling protocol has two important properties, 1) freedom from mutual deadlock and 2) bounded

priority inversion, which means at most one lower priority task can block a higher priority task during each

task period" [Sha, 1991:6]. Inclusion of the priority ceiling protocol allowed the formulation of the two

additional theorems:

Theorem 3: A set of n periodic tasks using the priority ceiling protocol can be scheduled
by the rate monotonic algorithm, for all task phasings, if the following condition is
satisfied [Sha, 1989:15].

C. + ... + - + max . n(2'-1)
TiTT, (2.3)

Theorem 4: A set of n periodic tasks using the priority ceiling protocol can be scheduled
by the rate monotonic algorithm, for all task phasings, if and only if the following
condition is satisfied:

(iv- [ll B "I
Vi, 1!5 i: <n, mrin C. 1 + -CL + -BI-) (2.4)

IJ= R, IT,|T, IT, fk

where Ci, Ti, and Ri are defined in Theorem 2, and Bi is the worst-case blocking time for
task i [Sha, 1989:15].

Theorems 3 and 4 provide generalized forms of Theorems 1 and 2 that handle blocking due resource

sharing or task synchronization. To handle soft-deadline aperiodic tasks the Deferrable Server and Priority

Exchange algorithms can be used [Sprunt, 1989:111. Both of these approaches create a high priority

2-3

periodic task (called a server) for servicing aperiodic tasks. The goal of each algorithm is to preserve the

resource bandwidth allocated to aperiodic tasks; allowing immediate execution of the aperiodic task when it

arrives. In the case of the Deferrable Server, during each server period, the aperiodic task's time is held for

the entire period and replenished at the end of the server's period. Thus when an aperiodic task arrives, it is

serviced immediately if time remains in the aperiodic task's time budgeL

The Priority Exchange algorithm, as the name implies, exchanges its priority with lower priority

periodic tasks whenever there are no aperiodic tasks ready for execution. At the end of the server's period.

the aperiodic tasks priority is again raised to the highest level. Again, since the aperiodic task always has

the highest priority, the Priority Exchange algorithm ensures that aperiodic tasks are handled immediately

when they arrive if time remains in the aperiodic task's time budget. The difference between the two

algorithms lies in their complexity and schedulability bounds as discussed by Sprunt, Sha, and Lehoczky

[Sprunt, 1989:6-10].

The point of this discussion is that mathematically precise methods exist for real-time system design

of systems composed of static priority, hard-deadline, periodic, sporadic, and/or aperiodic tasks. The

importance of rate-monotonic scheduling theory for use in intelligent real-time systems lies in its feasibility

test and corresponding priority assignment. The feasibility of a periodic task set can be quickly calculated

and the result acted upon. Additionally, the scheduling problem assoiated with assigning priorities is

significantly reduced if not eliminated.

2.2. Scheduling Imprecise Computations

The preceding discussion dealt with methods to determine the feasibility of a task schedule and

schedule fairly well defined tasks to achieve real-time performance. There exists another class of tasks that

vary in processing times and so cannot be handled easily by the preceding methods. The imprecise

computation technique can be used to help schedule tasks that fall into this category [Liu, 1991]. It allows

tradeoffs between result quality and computation time. This quality/time trade-off helps prevent timing

faults and assists in achieving graceful degradation.

Liu, Lin, Shih and Yu explain that their basic strategy revolves around the division of all time critical

tasks into two subtasks: a mandatory subtask that provides an adequate result and an optional subtask that

provides a refined result [Liu, 1991:58]. If the optional subtask is scheduled and executes to completion,

2-4

then the result is said to be precise. If the optional task is terminated before it completes, and the

mandatory task has been completed, then the result is said to be imprecise.

Three methods and the associated costs of each method for creating mandatory and optional subtasks

are discussed by them [Liu, 1991:59]. The first method is the milestone method and takes advantage of

monotone tasks. A monotone task is one whose result quality does not decrease as the task executes. If the

results of the task's execution and error indicators are recorded at appropriate instances, then the task's

result grows more precise as it is allotted more time to execute. The user can then decide, based upon the

error indications and result, when to terminate the task. The cost of the milestone method is the storing of

the intermediate results.

The second method described by them is referred to as a sieve function [Liu, 1991:59]. In this

method, computation steps (and therefore result quality) are traded off for processing time. The example

given to illuminate how this method is employed involves using a previous cycle's noise level estimate

when examining this cycle's radar returns. The cost for sieve functions is higher scheduler overhead. Liu,

Lin, Shih and Yu classify this type of scheduling problem as a 0/1 constraint problem [Cormen, 1990:335].

Since no benefit is gained unless the entire sieve function completes before its deadline, it should either be

scheduled to execute to completion or not scheduled at all.

The third method they describe is the multiple version method [Liu, 1991:59]. As the name implies,

each task has two versions; a primary version and an alternate version. The primary version has a longer

execution time, but produces a precise result. The alternate version produces a less precise result in a

shorter time. The cost of the multiple version method includes both storage space for the multiple versions

and higher scheduler overhead. Again, Liu, Lin, Shih and Yu classify the multiple version method as a 0/1

constraint problem for the same reasons cited above. In this case, scheduling the primary version is

considered to be the same as scheduling both the mandatory subtask and the optional subtask. Scheduling

the alternate version corresponds to scheduling only the mandatory subtask.

Liu, Lin, Shih and Yu then go on to develop a basic workload model for all imprecise computation

methods they described [Liu, 1991:59-601. Given a set of preemptable tasks,

T=TI1,T2 ... , Tn)

2-5

the tasks Ti in the set can be described by the following parameters:

"* r'i Ready time at which time Ti becomes ready for execution

"• d'i Deadline by which Ti must be completed

"* -i Processing time required to execute Ti to completion

"* Wi Weight that measures the relative importance of Ti

"* Mi Mandatory subtask of Ti

"* Oi Optional subtask of Ti

"* mi Processing time required to execute Mi to completion

* Oi Processing time required to execute Oi to completion

Note that in the preceding definitions, mi + oi = ri. Additionally, the deadlines of the subtasks Mi

and Oi are the same as the deadline for Ti . The ready time for the Mi subtask is the same as Ti but the Oi

does not become ready until after the mandatory subtask completes.

A valid schedule of T is defined as one that "assigns the processor to at most one task at any time,

and every task is scheduled after its ready time. Moreover, the total length of the intervals in which the

processor is assigned to Ti , ... , is at least equal to mi and at most equal to 'Ii." [Liu, 1991:591.

Additionally, a valid schedule is termed feasible if every task is completed by its deadline. Schedulable

task sets have at least one feasible schedule.

One final parameter used by Liu, Lin, Shih and Yu is the error parameter, £i. This parameter is used

to calculate a value for processing the optional subtasks. The error parameter is calculated by the equation

ei. = Ei(oi - oi). Here, oi is the amount of processor time allotted to 0i, and Ei is assumed to be a

monotone non-increasing function of 0i.

Once the imprecise computation scheduling problem is defined in these terms, it becomes a matter of

applying an appropriate algorithm to obtain a particular scheduling goal. Scheduling goals can be designed

to minimize the total error, average error, the number of discarded optional tasks, the number of tardy tasks,

or the average response time [Coffman, 1976] [Liu, 1991]. It becomes the job of the system designer or the

run-time controller to determine the appropriate scheduling goal at any particular instant during the

system's operation.

2-6

2.3. Intelligent Real-Time Systems

As vague as it may sound, real-time in an intelligent system seems to mean "fast enough".

Traditionally, as discussed above, a real-time system's performance is dictated by hard limits imposed on the

amount of time a task has to execute. These limits are normally pre-defined by the process that is being

controlled and the speed of the equipment used to control that process. For example, in a flight control

system the real-time requirements of the digital computer are dictated by the speed of the control mechanisms

which move the control surfaces, the speed with which the instruments monitoring the aircraft attitude can

detect changes resulting from control surface movements, and the time that the laws of aerodynamics

establish a response must be made. In an intelligent real-time system, real-time performance is context

dependent- The response time required of an autonomous aircraft from the detection of a threat depends upon

how quickly a response is required to ensure a successful outcome. The system obviously must respond

much faster to an inbound missile targeted at the ownship than it does to a threat aircraft which is beyond the

lethal radius of any weapons it can carry.

The key point of this type of variable response timeline is that it places the additional burden upon

the system of being able to determine the time constraints at any particular instant. A run-time,

dynamically adaptable control structure appears to be required [Payton, 19911 [Lambert, 19901 (Lizza,

19891 [Stankovic. 1988]. The system must be able to respond to rapidly changing requirements and still

produce valuable output. Two DoD funded programs, Pilot's Associate and Adaptive Suspension Vehicle,

have been addressin6 these issues. The programs. as they relate to intelligent real-time systems, are

examined below.

2.3.1. Pilot's Associate Program. Basically, the Pilot's Associate program is developing an

electronic back-seater to assist tomorrow's single-seat fighter pilot cope with the ever increasing amounts of

information presented to him [Whelan, 19901 [Banks, 19911 lAlderm. 19901 [Lambert. 19901 lAldern,

19911. The Pilot's Associate is developing a system to help the pilot identify the crucial information from

the background noise. It is the system which makes the aircraft understand the pilot's objectives,

preferences, and restrictions, and works in the tireless fashion of the computer in complying with them.

Figure 2.1 shows the overall concept of a Pilot's Associate. The system consists of six functional

elements: Situation Assessment (SA), Mission Planner (MP), Tactics Planner (TP). Pilot-Vehicle Interface

(PVI), System Status (SS), and the System Executive (SE). SA is responsible for assessing the world

2-7

external to the aircraft. MP is responsible for global planning from take-off to landing. TP is responsible

for responding to immediate threats. PVI ensures the system provides what the pilot wants, when he needs

it. SS is responsible for assessing the world internal to the aircraft. And finally, SE is responsible for

ensuring that all elements are solving not only the same problem but also the right problem. In the

following discussions, the term system refers to the entire collection of functions that make up the Pilot's

Associate. A sub-system or module is one particular functional element (e.g. Tactics Planner. Pilot Vehicle

Interface). A machine is a computer that pieces of the functional elements are implemented upoi.. (Note

that originally, the system was developed with each module to reside upon a different machine. However,

as the system developed over time, it became apparent that different pieces of the modules needed to

closely work together. This forced a migration of module pieces together based primarily upon data usage).

2.3.2. Lockheed's Pilot's Associate The current Lockheed version of the Pilot's Associate is

probably the furthest along in trying to implement a fairly complex intelligent real-time system [Aldern,

19911. Essentially, the approach is to code the system in C++ and then to statically distribute the set of

coded tasks across as many processors as necessary to achieve real-time performance. The process is based

upon the premise that processing power will be available (or can be added) to operate these systems in real-

time and thus no separate executive for controlling execution exists. Trhis approach has some potential

problems.

First, the domain chosen for these systems, by their very nature, is dynamic. It is widely held that

predictability in any combat situation will lead to higher risk of death or failure. Thus systems that operate

in a combat situation, or any competitive situation, face continually changing environments as one system

tries to overcome or defeat another. Any system designed for a competitive environment must be able to

change quickly as new knowledge is obtained. In the current Lockheed Pilot's Associate, since the

knowledge acquired is translated directly into an implementation language (C++), changes potentially

require significant work to locate the piece of code to change, determine how to change it, code the

changes, and tune the system performance to again ensure real-time constraints can be meet [Aldem,

1991:4-6 to 4-201. Essentially. the performance goals of the program have eliminated what was the

knowledge base as a separate entity and distributed the knowledge throughout the system. Given the syntax

of the Ada language, this same 1i=owledge coding' approach may be necessary for any DoD system.

2-8

.............:::::::::::::~ :::::::::::::::::::. :.... .

S...........

SENSORSSITUATION TACTI CS
ASSESSM ENT iii:il::

-A .10. SRI-....

INTERNALSENSORS _
..E IIN F O...

DATAU

SENSORSPSILTUSATIAT SURVIV

• ...:::::::::::::::::::::::::....

ASSESSMNT RECMMENDE

EFFCTVEES

Figure 2.1 Overall Concept of the Pilot's Associate

Additionally, the computational times for a large percentage of AI approaches are generally non-

deterministic (i.e., the search space is so large that an exhaustive search is impossible, thus some s•:rt of

guiding heuristics are used to get a solution that satisfies some domain specific criteria). Traditional real-

time systems do not handle non-deterministic tasks well and mapping an intelligent system's approach into

a traditional real-time system usually means modifying the original problem to eliminate some of the

difficulties associated with real-time operation. Generally, tasks are off loaded from the computer to the

human operator. If no human operator exists, as is the case in a fully autonomous system, the system

generally is given a 'canned' response to apply in all conditions.

Finally, this approach assumes there always is, or will be able to obtain the necessary processing

power to handle any possible workload. Although this may be true. I tend to believe that the opposite is

true; namely that there will never exist enough processing power to solve all problems simultaneously.

This should not be taken as a condemnation of the current Pilot's Associate approach. For example. one

can envision the problem as a standard set partitioning problem where the sets are combinations of the tasks

and the goal is to partition those tasks among n processors as efficiently as possible [Brassard, 1988:921

[Cormen, 1990:946] [l'indell, 19921. If the initial engineering design effort has ensured that some amount

2-9

of excess computing power exists, the problem is then reduced to creating a tool to solve the set partitioning

problem. At the point where no more additional tasks can be added, one simply upgrades the existing

processors to newer and faster versions, or adds another.

The Lockheed Pilot's Associate program is currently not experiencing any major run-time problems

with this method. However, the system is not completed and is known to have reduced functionality

because of the real-time constraints. If at some future point, processing power becomes an insurmountable

problem, a major system redesign will be required. Because of this constraint, Lockheed's real-time

method will not be used in this thesis investigation.

2.3.3. McDonnell Aircraft's Pilot's Associate McDonnell Aircraft Company's (McAir) Pilot's

Associate program real-time efforts were divided into two major thrust areas. McAir tackled the actual

implementation and sub-contracted FMC Corporation to investigate the software design and architecture

issues. Since McAir's implementation built upon the work FMC did, a review of the general model FMC

created is done first. Following that discussion, the McAir implementation of that model is examined. The

discussion is fairly in-depth since the work by FMC and McAir shapes the direction of this thesis effort.

Intelligent real-time system analysis by FMC [Dodhiawala, 19881 reached two conclusions:

1. In a system such as the Pilot's Associate, there will never be enough processing power to do all

required tasks, which dictates then,

2. Real-time performance cannot be obtained by speed alone.

Although the number and speed of the processors used in implementing a real-time system are a

primary concern, they are not by any means the only concerns in a complex intelligent real-time system. The

software architecture which controls the operation of the system plays an equally large part in achieving real-

time performance. FMC examined those characteristics (other than processor type and processor speed) of a

complex, real-time, intelligent system that affect it's real-time performance.

FMC's research determined there are four basic dimensions of an intelligent real-time system; speed,

responsiveness, timeliness, and graceful adaptation [Dodhiawala, 1988:1-2]. Speed is the dimension

concerned with the number of tasks executed per time unit. Speed can be increased by more and faster

processors or by increasing the efficiency of the algorithms. Responsiveness is the ability of the system to

2-10

take on new tasks quickly. It requires that the system be predictive enough to begin composing and executing

responses to new developments rapidly, and to appear as though all requests are handled instantly.

Timeliness is the system's ability to conform to task priorities. In other words, the system must be able to

perform those functions that are the most urgent when they are required. Any responses must be able to be

determined, presented, and acted upon in order to affect the current situation, not the past. Graceful

adaptation refers to the system's ability to reset priorities based upon the changing processing load of the

system. When the workload exceeds the capacity of the system, it must be able to focus its resources on those

tasks that are the most crucial for that moment. Clearly, three of these architectural features are dynamic in

nature and require run-time control to ensure the desired system performance is obtained.

Starting with the assumption of a blackboard implementation of the intelligent system, FMC believes

the run-time adjustable parameters of execution margin, scheduler heuristics, and channel priorities can be

used to form the basis of run-time, closed-loop, control of knowledge-based systems [Dodhiawala, 1988:71.

"The execution margin is defined as the number of knowledge sources that are allowed to execute during each

pass through the top level control cycle. Scheduler heuristics refers to the rules of thumb used to order the

currently active knowledge sources for execution. Channel priorities are run-time assigned values that dictate

how important a particular event is. Figure 2.2 shows the internal operation of the reasoning process in an

intelligent system that allows adjustment of these parameters. It should be pointed out here that although at

the top level, the intelligent system operates in an asynchronous fashion; inside the reasoning process,

synchronous control is exercised.

In Figure 2.2, the four channels (represented by the thick gray horizontal lines) are EMERGENCY

for processing events immediately, HIGH for processing fairly critical events, AVERAGE for processing

routine events such as monitoring the mission plan, and LOW which processes items only when the other

three channels are empty. The channel priority assigned to an event determines the relative importance of

that event.

The four gray rectangles in Figure 2.2, Trigger, Pre-Condition, Schedule, and Execute, represent the

stages a knowledge source goes through. The Trigger step attempts to trigger knowledge sources based on

the attributes of either the asynchronous external events or the synchronous internal events. It is important

to realize that an event can trigger more than one knowledge source. When a knowledge source is

triggered, its variables are set, establishing the context for the execution of the knowledge source or

instantiation (called a Knowledge Source Activation Record or KSAR). The PRECONDITION step

2-11

establishes whether a valid context exists for the execution of that KSAR. Possible values returned in this

step are OBVIATE - the KSAR is irrelevant or inappropriate for the triggering event, NIL - the context has

yet to be established, or the preconditions are satisfied and the KSAR moves to the scheduler to be

scheduled. In the Schedule step, KSARs are ranked and scheduled for execution based upon the current

scheduler heuristics. These heuristics evaluate the KSAR based upon its importance and urgency. An

important KSAR is one that is relevant to the current system goal, while an urgent KSAR is one whose

deadline for execution is approaching. The Execute step will execute the KSARs based upon the execution

margin. The execution margin determines how many KSARs on each priority channel will be allowed to

execute during each run through the top level control cycle. Using this approach, and assuming that not all

tasks can be processed in real-time, FMC believes that the control overhead involved is justifiable in terms

of the total system performance [Lambert, 1990] [Dodhiawala, 1988].

- Internal Event 1- External Event 0- Knowledge Source

- - Channels
External External
Events Pre- Events

Trigger Condition Schedule Execcute

SPriorities Context Heuristics Margin o

Figure 2.2. Reasoning Process Diagram

McAir's system ran on four Texas Instruments Explorer H machines with an assortment of other

machines providing support functions [Lambert. 1991]. The top-level architecture is shown in Figure 2.3.

Each of the sub-systems (indicated by the circles) operated asynchronously and ran in parallel on

independent machines. The system was event-driven, allowing communication of changes to blackboard

2-12

data instead of transmitting entire updated blackboard data structures. The blackboard itself was distributed

among each of the machines that make up the system. Each sub-system was further divided into a

blackboard process, 1/0 process, and a reasoning process as shown in Figure 2.2.

PA Distributed :la.kboard. ..:..:.:.: .:..:.:.,.:.. .:.:.:.:+ +. :.. :.

SA SA SMoutio0n Assessment

..ew........ PVI Pl/ot/VehIc/e Interface

S o .

S•* Small Scale Parallelism
* Asynchronous PA-SIm Operation
* Asynchronous Top Level Cycle
C Dedicated Support Function Processor

Figure 2.3 McAir's Top Level Architecture

Using FMC's approach, McAir's team incorporated some of the real-time concepts into their system.

The system was implemented primarily in Inference Corporation's Automated Reasoning Tool (ART).

modified to allow for some PA-specific functions. A modification to the ART agenda mechanism allowed

for heuristic-scheduling, a feature from FMC's real-time work. Additionally, the Knowledge Source syntax

was modified to put trigger and pre-condition patterns into a context slot and extra declarations were added

to include specification of the knowledge source urgency and importance [Lambert, 1991].

The module internal architecture shown in Figure 2.4 implemented the blackboard, I/O. and

reasoning processes [Lambert, 19911. Basically, the ART working memory used Rete Net pattern matching

provided with ART to match the context of the knowledge sources [[ambert, 19911 [Fanning, 1990]. Once

a knowledge source was matched, it was placed on the agenda for execution. From the agenda, the

2-13

knowledge source was executed using a LISP macro that expanded into ART rules. The LISP macro

allowed McAir to augment the ART rule representation and include the real-time scheduling features of

importance and urgency. The gray lines indicate the control cycle. Again, ART was modified to allow for

communication processing to take place after each knowledge source was activated. The control cycle was

designed so that the Blackboard and L/0 processes slept if not required, thus allowing more of the machines

resources to be used in knowledge source execution.

Blackboard Data

S• Inter-Blackboanl

ComuniScation Data
. IExternal

C o ml m u n ic a t i o ni D a t Co m m u n i c a ti o n Di

Inter-BlackSouard e
Co. ..unicationCofmuliicaton Date

Figure 2.4 McAir's Module Internal Architecture

23.4. Adaptive Suspension Vehicle. The Adaptive Suspension Vehicle (ASV). is a self-contained

six-legged, human operated, walking vehicle. The ASV consists of an engine driving 18 hydraulic leg

actuators, over 100 leg position, leg velocity, leg pressure, and inertial sensors, and a laser range scanner

[Payton, 199 1:53] [Bihari. 1989:59-62]. Tlhe processing suite consists of seven Intel 80386 processors and

two special purpose numerical processors. As of August, 1991, the control software was approximately

100,000 lines of Pascal source code.

"T'he ASV planning and control hierarchy is shown in Figure 2.5. The human operator "flies" the

vehicle with a joystick. Trhe Planned Vehicle responds to the joystick commands by providing leg

movements to fulfill them while simultaneously avoiding local obstacles. Trhe Planned Vehicle sees the

2-14

Servoed Vehicle as a system of interacting legs. The Servoed Vehicle takes plans provided to the Planned

Vehicle from the Motion Planner and sends the appropriate commands to each Servoed Leg. Each Servoed

Leg knows its corresponding physical leg's state from the sensors mentioned above. The Servoed Leg

translates the commands from the Servoed Vehicle into direct commands to the Physical Leg's three

hydraulic actuators. [Payton, 1991:52]

The Servoed Legs and Servoed Vehicle operate in the a well-defined world and as such, functional

as 'traditional real-time systems' as discussed in section 2.1. Extensive analysis of the physical legs being

controlled resulted in a lOms period for each Servoed Leg and a 25ms period for Vehicle Servo. Although

the Leg Servo ideally runs at a 5ms period, processing power limitations forced a lOms period and

correspondingly slightly degraded performance. The Leg Servo can even miss an occasional period,

allowing for some slight timing constraint negotiability. The rate-monotonic scheduling algorithm (section

2.1) was used to implement these fixed period, fixed priority tasks.

Figre2.5nanningadedVehi

(y l 2-.5m).............

Figure ~ ~ ~ 25.... AS.lnigadCnlAchtcue[atn 9 :5

2 ...5..

"The Motion Planner differs from the servo control in that it operates on the constantly changing

terrain. It periodically produces a continuous velocity plan segment that is steadily consumed by the

Servoed Vehicle. The plan segment is made up of two parts: a normal portion containing requested body

acceleration to be used for a certain duration into the future (Pin), followed by a safety portion containing

contingency deceleration to zero body velocity (Pis). Each newly generated plan segment overwrites the

previous plan segment's safety portion. This two portion plan segment method operates as a 'forward

recovery' technique in case of planning system failures as illustrated in Figure 2.6.

The Motion Planner's period varies between lOOms and 500ms depending upon the current state of

the vehicle and the environment. Payton and Bihari state that the time to calculate a plan segment is

approximately:

Vmax
DTcp = As + DTov

SR- 1 (2.5)

where

DTcp = the time required to compute a plan segment

Vmax = the vehicle's maximum allowable velocity

As = the acceleration during the safety portion of the plan segment;

SR = the rate at which the internal simulation of the vehicle's movements runs, as a
multiple of real time;

DTov = a fixed amount of overhead time associated with computing a plan segment
[Payton, 1991:561

Although not currently implemented in the ASV, the existence of Vmax in the planning cost equation

(2.5) could allow the scheduling algorithm to adjust its performance to meet timing constraints, telling the

vehicle to slow down to allow for more planning time. The ASV does, however, use an adaptive

scheduling algorithm. It starts with short planning periods and monitors how close to its deadline each

segment completes. Payton and Bihari state that "If plan segments are completed uncomfortably close to

their deadlines, it lengthens the normal portion of the plan segments and increases the planning period."

[I ayton, 1991:561.

2-16

PI• P2 n 00W

Deadline 2 Deadline 3

Figure 2.6 ASV Plan Generation [Payton, 1991:55]

In summary, because the six-legged vehicle can become unstable if the legs operate independently,

the ASV fits nicely into the centralized, hierarchical control structure. The ASV has successfully integrated

both a fixed rate-monotonic scheduling algorithm (controlling the leg servos) and an adaptive scheduler

handling the planning tasks. The two-portion plan segment (normal and safety) technique is adaptable to a

variety of systems. One can envision an airborne autonomous vehicle simply circling if the planner misses

its deadline. Additionally, the link Payton and Bihari make between planning time and vehicle velocity is

also adaptable to other domains. Both of these features should be addressed in any intelligent real-time

system. However, this thesis is focusing on the software architecture issues of intelligent real-time systems,

and not on domain-specific techniques.

2.4. Common Intelligent Real-Time System Components

In order to proceed with the development of an architecture to support intelligent real-time systems,

it is necessary to determine what components appear to be common among the systems discussed so far.

The architecture as developed in the Pilot's Associate program is perhaps a good place to start (Figure 2.2).

In the figure, the top level components that have been identified are a Blackboard Process, an IO Process,

and a Reasoning Process. What is missing from this architecture is the notion of a real-time task scheduler

or task manager. Basically, the McAir Pilot's Associate approach to real-time can be summed up by the

term 'agenda-management'. Because there is no preemption, or guarantee of any kind on the execution time

2-17

of the KSARs, the approach needs to be enhanced to handle hard real-time constraints and provide some

guarantees of performance.

The ASV goes one step further in that it does add a real-time task scheduler. It uses a real-time

operating system, employing rate-monotonic scheduling to control execution of the leg actuators. The ASV

also includes a component that performs the I/O Process similar to the Pilot's Associate, namely the

component that sends commands to the leg actuators and receives data from the system's sensors.

Additionally, it possess a reasoning process in the form of the motion planner. However, its architecture

does not address the computation time - solution quality trade off issue.

In [O'Reilly, 19881, O'Reilly and Cromarty propose still another component of an intelligent real-

time system called a metaplanner. The job of the metaplanner is to plan, monitor, and evaluate the

execution of problem solving. O'Reilly and Cromarty state that such a system would also require a model

of the computational times and cost of the various tasks the system can perform. With this 'system model'

the metaplanner is able to make trade offs about which tasks to execute and when, given the current state

the system finds itself in and the amount of time available to calculate a solution.

From all of these sources, I have drawn the conclusion that the following components need to exist

in any intelligent real-time system architecture:

Environment Model. This component performs the job of the blackboard in the Pilot's Associate

program, acting as a repository of information about the current state of the environment

external to the system.

* System Model. This component is used to evaluate potential threads of execution. It consists of

a graph like structure which indicates the hierarchical ordering of the system's problem solving.

"* 110 Process. This component translates signals from the environment into a format usable by

the system and vice versa.

" Reasoning Process. The Reasoning Process or perhaps metaplanner, provides the adaptive

control needed by the system to act 'intelligently'. Its primary job is to determine what the

current task set is in contrast to solving the problems associated with the current task set.

2-18

Task Scheduler. The Task Scheduler schedules the workload of the system based upon

directions from the Reasoning Process, and provides some real-time guarantees of meeting

deadlines.

2-5. Schedulable Task Types

I have also drawn the conclusion that in an intellig,'nt real-time system there exist three broad

categories of tasks: periodic, singular, and any-time. Each task also is broken into a mandatory part and an

optional part. Mandatory task parts represent the minimum acceptable processing required in order to

complete a task. Optional task parts represent the additional processing to increase a solutions quality. All

mandatory task parts are fully deterministic while the optional task parts execution time depends upon the

type of algorithm used.

The three task types allow for a mapping of the task types discussed in sections 2.1 and 2.2. Periodic

tasks are real-time periodic tasks as described in section 2.1. Both the mandatory and optional parts of

periodic tasks are fully deterministic. Singular tasks are non-periodic tasks that generalize the sieve

function and primary/alternate task types in section 2.2. The optional part a singular task gives a more

precise solution, but requires more processing time to compute. Any-time tasks generalize the monotone

tasks in section 2.2. The optional part of an any-time task provides solutions whose quality increases with

processing time.

2.6. Summary

Methods to determine the schedulability of periodic task sets are well defined. Methods also exist to

schedule tasks which have non-deterministic execution times. Also, intelligent real-time systems are being

developed that operate in a number of different domains. However, no intelligent real-time systems are

currently addressing dynamic real-time task scheduling and control. The Pilot's Associate program has

developed a system to dynamically adapt and control the execution of a knowledge-based system and is

described in section 2.3.3. What the Pilot's Associate system is missing is a method of ensuring that tasks

will meet their deadlines.

By integrating some of the traditional real-time systems methods, imprecise computation scheduling

methods, and techniques developed in the PA and ASV programs, developing an intelligent real-time

system architecture in Ada is feasible. The goal of this thesis research is to develop the architecture of such

a system and demonstrate the feasibility of the design; in particular, demonstrate the ability to dynamically

2-19

create, schedule, and execute tasks to achieve real-time performance. Analysis of the results of this

examination should allow one to suggest heuristics that can be used to dynamically determine the current

scheduling policy.

2-20

III. Design Approaches, Assumptions, and Key Decisions

Chapter 2 provided some necessary background needed tr design and implement an intelligent real-

time system (IRTS). This chapter draws from that background informatL a and provides design

methodology for implementing such a system. In particular, how the architecture iLcorporates the common

IRTS components identified in Chapter 2 is examined. In this chapter, performance measures for IRTS are

examined along with design considerations that can be used to affect the performance measures. Following

that, some basic design assumptions are stated and two possible design approaches discussed.

3.1. Performance Measures

Before attempting to design an architecture that supports intelligent real-time systems an

examination of potential performance measures is prudent. Once these measures have been defined, it is

then possible to begin making design decisions with an idea of the performance impact such decisions will

have. The definition of performance measures then is a critical element in any design process.

A prevalent, but inaccurate, belief is that real-time systems are concerned with execution speed

alone. In [Shamnsudin, 1991], [Dodhiawala, 1989] and [Dodhiawala, 1988] the authors identify four

performance measures for real-time systems. Those performance measures are as follows:

" Speed. This performance measure refers to the number of tasks executed per unit time. Speed is

highly dependent upon the processing hardware. Generally, more and faster processors increase

this performance measure. Additionally, efficient algorithms can increase the speed of a system.

" Responsiveness. "Responsiveness refers to the ability of the system to take on new tasks

quickly. Operating in a rapidly changing dynamic environment, a responsive system perceives

new developments early enough to compose and execute responses, possibly at the expense of

ongoing tasks that may be delayed or even abandoned" [Dodhiawala, 1988:1-2].

"• Timeliness. This measure "characterizes the system's ability to conform to task priorities"

[Dodhiawala, 1988:2]. Assuming that not all tasks can be finished by their deadlines, a timely

3-1

system is one that finishes as many as possible. Thus some tasks must be "postponed, scaled

down or discarded to allow the other work to be completed on time" lDodhiawala. 1988:2].

Graceful Adaptation. "This refers to the ability of the system to reset task priorities according to

changes in the resource availability and/or demand and workload" [Shamsudin, 1991:15].

These performance measures are well suited for describing both traditional and intelligent real-time

systems. However, two additional measures should be considered. The first is data consistency and the

second is solution quality. Data consistency refers to the system's ability to maintain a timely and

consistent view of the environment in which it operates. A timely view of the environment ensures that the

system is solving problems that exist currently, and not responding to events that have been superseded by

the passage of time.

A fundamental premise of intelligent real-time systems is that solution quality can be traded off

against computation time to produce better solutions to the more important tasks. In order to determine the

effectiveness of the system in performing this job, some measure of the system's solution quality must

exist. This measure is probably the most domain specific of the performance measures mentioned thus far,

but should be addressed by any evaluation effort.

Summarizing, the performance measures are speed, responsiveness, timeliness, graceful adaptation.

data consistency, and solution quality. With the performance measures identified, the design effort can

begin to focus on ways to affect those measures. In the next section, general design considerations are

examined and related to the performance measures they are attempting to address.

3.2. Design Considerations

In [Dodhiawala, 1988:6] the authors presented a number of candidate methods useful when

designing a real-time system. They suggest that a designer should consider control reasoning, focus of

attention, parallelism, and improving algorithm efficacy when addressing design issues. Control reasoning

is based upon the notion that knowledge about task demands, time constraints, system goals, and resource

demands can be used to make smarter scheduling choices. Control reasoning can be used to affect graceful

adaptation by recognizing overload situations and adjusting task priorities appropriately. Control reasoning

can also impact the solution quality, timeliness, and responsiveness of the system. The limiting factor in

applying control reasoning is the processing overhead associated with performing the reasoning and

3-2

implementing the controls. Temporal reasoning, speed/effectiveness trade-offs, supervisory control, and

discretionary I1/ are examples of implementable control reasoning strategies [Dodhiawala, 1988].

The capability to quickly respond to critical events is a desirable feature of any real-time system.

This ability is referred to as the focus of attention. Preemption of executing tasks, prioritization of ready

tasks, and the ability to change process;ng contexts quickly are methods of implementing focus of attention.

Implementing focus of attention strategies directly affect a system's responsiveness and timeliness,

generally with a corresponding decrease in speed as a result of processing the context switches.

Parallelism is primarily a concept associated with speed. By exploiting parallelism at both the

architecture and application levels, significant performance gains are possible [Sawyer, 1990]. Multiple

processors or concurrent processes are examples of methods to achieve parallelism. Increased parallelism

generally results in increased design complexity. Adding parallelism to systems as an afterthought can be a

significant challenge, since most of the inherent parallelism in the system may have been lost in the

implementation.

Algorithm efficacy also primarily addresses the speed performance measure, but has a great impact

upon the timeliness of the system as well. Methods used to improve algorithm efficacy include algorithm

caching, incremental algorithms, and anticipatory processing. Generally, algorithm efficacy is an issue at

design time, but each algorithm is tuned during implementation to meet system timeliness or speed

requirements.

From the design perspective, each consideration needs to be addressed and each trade-off examined.

First however, it is necessary to present the design assumptions that are a driving factor in this thesis effort.

3.3. Design Assumptions

The first assumption is that in any intelligent system, the majority of the work performed by the

system is procedural in nature [Wilber, 1989:75]. For example, if one was to create a fully autonomous

system to pilot a modem fighter aircraft, the existing computer software that drives the flight control,

sensor, weapons, and navigation systems would in all likelihood not be replaced with Al programs. Rather,

an Al system would be installed to control these existing systems, similar to the way in which a human

pilot decides what system to activate, what mode to activate it in, and when to activate a particular system.

Thus the Al system treats the other aircraft systems as either tools for gathering information or as effectors

3-3

to achieve a desired state. It does not duplicate the procedural functions already performed by the other

systems.

The first assumption thus leads directly to the second assumption and the primary system design

goal: design a system that allows an intelligent agent to control procedural tasks in such a way as to

effectively and efficiently achieve a dynamically determined goal within real-time deadlines. The focus of

the design effort then is not on the design of an IRTS for a specific domain, but rather on an architecture

necessary to implement any intelligent real-time system.

An additional assumption is the use of Ada as the implementation language. Research and

development communities, in my opinion, seem to believe that an implementation language is of little or no

consequence to a research effort. In general this may be true, however, the rising trend in DoD software

costs has resulted in a public law that dictates the use of the Ada programming language for all DoD

software, making the implementation language an engineering issue. Any software system that is migrating

into operational use must address the Ada implementation question. In essence, the implementing language

is an engineering hurdle to overcome, similar to choice of the technology used to implement integrated

circuits. This thesis effort recognizes the issue and attempts to add some basis for making decisions on the

use of Ada in intelligent real-time system design.

The final design assumption stems from the belief that not all the desired processing can be done in

the required time. The design assumption is that overload situations occur. If the opposite were true, then

there is little need for any explicit control structure to prioritize what the system is doing. This design

assumption dictates that the system must be able to prioritize the current task set to ensure those that are

most relevant to the current situation are executed first and completed by their deadlines. Consolidated and

restated, these four design assumptions are:

1) A real-time intelligent system consists of a large collection of procedural tasks whose execution

timeline is determined by an intelligent agent.

2) The focus of this effort is on the software architecture of a system that provides the intelligent

agent the necessary control to achieve its current goals in a timely manner.

3) The system must use the Ada programming language for implementation. Thus, it is critical to

show how the concepts outlined in this thesis can be implemented in Ada.

3-4

4) The system is at times overloaded and thus must be able to dynamically prioritize the tasks.

(Note that this thesis research does not purport to develop the domain knowledge necessary to

determine what task is the most important at any particular instant; rather, it gives the intelligent

agent in the system the tools with which to ensure those priorities are enforced).

Finally, a critical element of this thesis is real-time and, as discussed in Chapter 2, the guaranteed

ability to meet deadlines. The design effort must provide a method for the system to ensure real-time

performance as defined by the ability to guarantee deadlines. Additionally, it is important to remember that

execution speed is always an issue, even if not explicitly mentioned, in any design decision.

3.4. Possible Design Approaches

Drawing from the background research, two fundamentally different approaches for achieving the

goals of this thesis effort were envisioned. The first method is to modify an existing "reasoning process's"

data and control structures to allow for the addition of real-time programming constructs. The second

approach is to use standard Ada and design separate real-time data and control structures controllable by

the reasoning process. The work done by the Pilot's Associate Program as outlined in section 2.3.3 seems

to indicate that the first approach, modifying an existing reasoning process, would be the most appropriate.

After a long period of consideration, I opted to use the second approach. What follows is a brief

examination of the issues involved in both approaches and the reasons for the decision to not to attempt to

modify an existing reasoning process.

3.4.1. Modifying CIUPS/Ada Design Approach. In section 2.3.3, the approach to achieving real-time

performance in an intelligent system can be summed up by the term agenda management. The system must

determine what is the most important knowledge source, process, rule, or other computation to execute

next. Agenda management requires an agenda, and a method to prioritize items on the agenda. Thus for

my purposes, I needed a reasoning process that allows for basic agenda management and, because of my

third design assumption, is implemented in Ada. Additionally, since modifications to the source code of

the reasoning process are practically guaranteed, access to the source code and documentation is required.

CLIPS/Ada is the tool I found best suited to fill this role.

CLIPS/Ada is an Ada implementation of version 4.3 of NASA's C Language Integrated Production

System. CLIPS/Ada provides a basic set of functions which can be used to achieve agenda management

and rule prioritization [CLIPS-Ada, 1991:20] [CLIPSRefMan, 199 1a] [CLIPSRefMan, 199 1b1 [CLIPSUG,

3-5

1991]. Given these basic building blocks, it is easy to envision adding the modifications as outlined in

lDodhiawala, 1988], [Lambert, 1990], and [Lambert, 1991] and discussed in section 2.3.3. In particular,

adding channels or multiple agenda queues, scheduling policies based upon completion deadlines, and

monitors to detect missed deadlines appears a straight-forward task.

CLIPS/Ada provides three basic parts to its rule structure as shown in Figure 3.1: the declaration

part, the conditional-element(s) (the asterisk indicates plurality is possible), and the action(s). The

conditional-element is traditionally referred to as the left-hand side of the rule and the action part is right-

hand side of the rule. The declaration defines properties of the rule, the conditional-clement(s) defines the

conditions necessary for the rule to execute, and the action(s) defines what should occur when the rule

executes.

(defrule <rule-name> [<comment>]
[<declaration>] ; Rule Properties
<conditional-element>* ; Left-Hand Side (LHS)

<action>*) ; Right-Hand Side (RHS)

Figure 3.1 CLIPS Rule Definition Structure [CLIPSRefMan, 1991a:27]

The only currently defined declarative characteristic available in CLIPS/Ada is the salience of the

rule. Salience is the priority of the rule and can either be assigned dynamically or statically. The salience

defines which rule on the agenda of active rules executes next and thus provides one feature required of an

intelligent real-time system. Additionally, because CLIPS/Ada allows the salience to be evaluated at every

cycle through the rule execution loop, it is easy to imagine the agenda management functions discussed in

section 2.3.3 being added with relative ease.

What is missing from the CLIPS/Ada system is the ability to determine and enforce the execution

time allotted to each rule's actions or of the CLIPS/Ada inference engine itself. Thus, once a rule is chosen

it is executed to completion, regardless of any changes in the environment. Additionally, the ability to

declare periodic rules or functions (periodic tasks are fundamental in real-time systems) is also missing,

although CLIPS version 5.1 is beginning to address this issue [CLIPSRefMan, 1991a:220]. Thus, for my

3-6

purposes, I would be required to add the ability to declare and execute periodic tasks, ensure execution

deadlines, and interrupt or terminate executing rule actions.

One method of incorporating these abilities into CLIPS/Ada would be to expand the declarative part

of the rule structure to include additional characteristics necessary to ensure real-time performance. Figure

3.2 shows an example of such a modification to the CLIPS/Ada rule structure. Here added declarations of

rule-type, mandatory-duration, and optional-duration allow scheduling decisions to be made. Additionally,

the RHS actions are divided into mandatory and optional actions which can be executed as determined by

the current situation and scheduling policy.

(defrule <rule-name> [<comment>]
[<declaration> ; Rule Properties

<salience>
<rule-type>
<mandatory-duration>
<optional-du ration>]

<conditional-element>* ; Left-Hand Side (LHS)

<mandatory-action>* ; Right-Hand Side (RHS)
[<optional-action>*])

Figure 3.2 Modified CLIPS Rule Structure

Adding the ability to start, stop, and terminate executing rules is much more complex. First, it

implies multiple processes operating concurrently. Each rule therefore needs to be encapsulated in a form

that allows control of its execution time. Because my design assumes Ada is used and Ada concurrency is

expressed in Ada tasks, essentially, each rule needs to become a separate Ada task. This is a significant

change from the single thread of control CLIPS/Ada executes under now and a method to translate

CLIPS/Ada rules into Ada tasks is required.

These changes are possible to implement; however, the job of implementing them is staggering

[Sawyer, 1990]. First, the CLIPS/Ada source code contains over 130 files that total to more than 2.5MB of

source code. Second, the changes involve both syntactic and semantic modifications. implying changes

through out all the source code. Finally, this thesis effort is focusing on the design of an generalized

architecture capable of supporting IRTSs, and not restricted to only rule-based systems- thus, this approach

3-7

was deemed currently impractical. The modification of CLIPS/Ada to support real-time is left as future

research.

3.4.2. Controllable Real-Time Task Manager Approach. The second approach consists of using

standard Ada and designing a system that supports real-time constraints and is controllable by another

process called the Reasoning Process. The goal is not to modify the Reasoning Process itself, but rather to

treat it as a separate entity that controls a real-time system. The Reasoning Process must be able to control

what the current task set is, what the current scheduling policy is, and be able to change them as required.

What it is not required to do is the actual scheduling and execution control of each task in the currently

defined task set. This elevates the Reasoning Process to a "supervisory level", acting as the central element

in the control reasoning of the system, and alleviated of the bookkeeping necessary to implement the

desired scheduling policy.

This approach requires a separate entity called the Task Manager that controls the instantiation,

scheduling, and execution of Ada tasks as directed by the Reasoning Process. Additionally, it provides

status information about the state of a task or the state of the system as a whole to the Reasoning Process.

The design process using this approach requires that a set of controllable parameters be devised that are

manipulated by the Reasoning Process and implemented by the Task Manager. The identification and

implementation of these controllable parameters is the heart of this thesis effort.

As implied above, the controllable parameters can be divided into groups based upon the function

they are performing: scheduling policies, control variables, status variables, and task controls. Example

scheduling policies are earliest deadline first, important task first, and shortest task first. Example control

variables are the percentage of CPU time to allocate for periodic tasks, or execute mandatory or optional

task parts flags. Example status variables include the actual number of tasks currently running or the

percentage of CPU time currently in use. Finally, task controls include task instantiation, task modification,

and task deletion. Note that creating a task is a different operation than scheduling a created task.

The concepts and methods developed using this second approach are also applicable to the first

approach. It is conceivable that the Task Manager can be incorporated directly into the Reasoning Process.

Alternatively, one can choose from the methods developed here to meet real-time constraints and only

incorporate those that seem to provide the most utility. Taking this second approach does not prevent

someone from taking the first approach and may actually be the necessary first step in the first approach.

3-8

The remainder of the chapter addresses the design decisions made to use the second approach and concisely

defines the design problem.

3.5. Design Problem Statement

A statement of the design problem now helps to define what this research is attempting to do. It is

important to remember that an underlying assumption of this thesis effort is the existence of a domain

specific problem solving structure (plan-goal graph or task network). Remembering that, and drawing upon

the information presented thus far in this thesis, the design problem can be stated as follows:

Given a graph structure (plan-goal graph or task network) that represents the system's operation, and

some currently active subset of that structure, dynamically generate and execute a processor schedule

to maximize system performance based upon a dynamically determined scheduling policy. Each

node in the graph represents a task to accomplish in response to some event from the environment or

needed operation to accomplish the system's mission, and each node represents either a periodically

performed task, single event response task, or a continually refined event response task (an any-time

task).

3.6. Key Design Decisions

From the background research performed, constraints upon development tools, and my own

intuition, a number of key design decisions are easily made. This section explicitly lists those decisions and

some of the reasons for each one. In short, those key design decisions call for small scale parallelism,

asynchronous operation, Ada tasks as the scheduling elements, dynamic Ada task instantiations, and a

single processor feasibility implementation.

All of the systems examined in the background research were implemented with between four and

eleven processors [Lanbert, 1990] [Aldern, 1990] [Payton, 1991]. This relatively small number of

processors can generally be classified as small scale parallelism. The architecture developed in this thesis

effort should consider a partitioning of functions suitable for a small number of processors.

Asynchronous operation of the partitioned functions is also a conclusion drawn from the background

research. Each of the partitioned functions should operate at its own speed as dictated by the work it

performs. This approach allows for decoupling of the system components and corresponding performance

3-9

benefits. Additionally, events external to the system, generally asynchronous in origin, can be handled as

they occur.

A direct result of the design assumption of Ada as the implementing language is the use of Ada

tasks. Ada represents concurrency in the form of tasks and thus any system implemented in Ada, and

intended to execute concurrently, should use Ada tasks. This implementation language imposed constraint

must be addressed if task scheduling is to be performed in this system.

A decision resulting from my literature review is the requirement for dynamic Ada task creation and

control. From examination of knowledge engineering documents of the Pilot's Associate program. it is

clear that in any real system, there are a very large number of tasks the system can perform. Clearly, not all

of the tasks can be economically instantiated simultaneously within the limits imposed by today's

processing systems. This forces me to the conclude that tasks must be created or instantiated dynamically

at run time.

Finally, the issue of a design feasibility demonstration must be addressed. Given the tools available

for this research effort, and the limited time to develop a demonstration, a single processor feasibility

demonstration is the only viable altemative. Since, this thesis effort is the beginning in a series of related

efforts to develop and flush out an intelligent real-time system, I believe the most important issue to address

first is the feasibility of dynamic task creation and scheduling. For that reason, I have chosen to start first

with a single processor implementation, while maintaining concurrency in the design.

3.7. Design Approach Summary

This chapter has attempted to provide some of the design methodology and some design guidelines

used in developing this intelligent real-time system architecture. In summary, I have listed some

performance measures and some design concepts and methods to affect those performance measures.

Additionally, basic design assumptions and some key design decisions have been addressed. The following

chapters in this thesis develop an architecture based upon the design assumptions and decisions, and

examine the issues arising from that development effort.

3-10

IV. An Intelligent Real-Time System Architecture

Because the scope of this thesis investigation is so large, the research and development effort is not

completed within this thesis effort. The research area of intelligent real-time systems is diverse and

complicated, and this effort is beginning the process of examining the issues involved. Examination of the

issues is done by incrementally designing and implementing a system capable of performing the role of an

intelligent real-time system (IRTS) and addressing potential problems as they arise. Acknowledging the

broad subject area of this research, it is necessary to provide a larger vision of how such a system should be

constructed. The goal of this chapter is to provide that vision.

4.1. Top Level Design

The top-level intelligent real-time system conceptual architecture is shown in Figure 4.1. Briefly,

the Environment Model acts as the data repository, similar to a blackboard as discussed in section 2.3.3.

The I/O Process is responsible for communications with the environment. The Reasoning Process is

responsible for determining the currently active set of tasks and the current scheduling policy to use in

scheduling that set of tasks. The Task Manager is responsible for implementing the scheduling policy and

notifying the Reasoning Process of the current status of the task set. Finally, the System Model represents

the system's problem solving approaches in a form that can be used by the Reasoning Process in

determining the currently active task set. The top-level design includes all the basic components of an

intelligent real-time system as identified in Chapter 2. The Reasoning Process is filling the intelligent agent

role and uses the Environment Model, System Model, and status information provided by the Task

Manager to reason with. The Task Manager schedules tasks as directed by the Reasoning Process to

achieve real-time performance.

The architecture vision presented in Figure 4.1 attempts to maintain as much parallelism as possible

in the design. From the background research, it can be concluded that most IRTSs run on multiple

processors, usually loosely coupled or distributed. The recognition of that probable direction is shown by

separation of system functions. Each function is envisioned as a separate Ada task. As mentioned

previously, in Ada, parallelism is represented in tasks. Additionally, the language provides a number of

features specifically designed to handle task scheduling and inter-task communications (Booch, 1983:231-

4-1

3041 Uocke, 1992] [AdaLRM, 1983:Chapter 9] [Real-Time, 19841. Methods other than using Ada tasks

are possible and should be examined, but for the purposes of this effort and the top-level design, Ada

tasUig is a keystone.

The component most lacking in previous intelligent real-time systems is the Task Manager. For that

reason, it is the primary focus of the rest of this thesis effort. However, before discussing the design issues

of the Task Manager, the other components are briefly discussed. The discussion also contains suggested

approaches to implementing the components not yet implemented in this research effort.

.....................

...........-........

F vironmentn..........
.....

........... e..---
10easoning Task

a-na or Any Tim.......... I I % - -..........: :X %- :;--- :;-:-:::.....................--------------------..
...................................... y e týe m SIngular........Model....................... :X-Y............:i ixý i :- I X.X.: %

Figure 4.1 Top Ixvel Design Diagram

4.2. Environment Model

The development and implementation of the Environment Model is beyond the scope of this

particular thesis effort. However, its impact on the overall system design must be accounted for and

addressed in any feasibility demonstration. The Environment Model is perhaps the most domain specific

aspect of any IRTS. The Environment Model encapsulates all the data structures that are deemed relevant

to the system's ability to function intelligently in the environment. The exact method used to represent the

environment model is an open issue; however, this research plans to pursue an object oriented approach.

4-2

Along those lines, my investigations have centered around the use of Classic-Ada to implement an

object-oriented environment model [ClassicAda, 1989]. This package provides all the standard object

oriented data and control structures. In addition, it allows object references to be passed by means of an

object ID value. This ability is highly desirable when passing information to the Task Manager for use in

controlling tasks. Essentially, a pointer task's data structure can be passed and stored as a single object ID.

Although shared memory structures are common practice in real-time systems, there is a potential

communication bottleneck that can be created with this approach. Future efforts should examine this issue

closely.

Again, it is out of the scope of this thesis effort to fully implement an environmental model.

Identifying the relevant ideas (passing pointers to data structures by object ID and object oriented design

techniques) suffices to give the direction this is pursuing. Additionally, it provides general guidance on

where to begin in any follow-on thesis effort.

4.3. System Model

Development of a specific system model for a particular domain is not the purpose of this thesis. As

has been mentioned previously, this research is predicated upon the assumption that a SystL, Model for the

chosen domain already exists. Thus for the purposes of this architecture, a method of representing that

model needs to be provided. The planned direction is to use a graph theory approach to represent the

System Model.

It is important to point out that the graph structure used to represent the system to the reasoning

process is not, in fact, the system. Instead, each node in the graph is a representation of some processing

required of the system as a whole. The actual code that represents each node in the System Model is

accessed and controlled by the Task Manager.

While the system is executing, there should conceptually be two system models present. The frst

one is the sum total of all the possible nodes that the system can instantiate, and the second represents the

set of tasks currently instantiated by the system. The first model contains in each node, information on how

to instantiate that particular node and the real-time impacts of instantiating that node. The nodes in the

second network should contain the information actually used to instantiate that particular instance, and

information that allows the Reasoning Process to communicate with the instantiated task.

4-3

Simple graph functions should be able to accomplish the job of the System Model effectively. Thus,

the design must allow one to add or delete nodes in the graph, search the graph for a particular node, and

allow the reasoning process access to the data stored in that node. All of these are standard graph functions

available as Booch components [Booch, 1986]. In addition, reasoning about the temporal relationships

between tasks must be allowed for. Future research should pursue the use of temporal logic and temporal

constraint networks to achieve that ability [Wood, 19891 [Dechter, 1991].

4.4. 1/0 Process

The exact internal workings of the 1/0 Process is again implementation dependent. The important

issues to address are the fact that I/O is required and the relative priority associated with 1/0 in general. For

example, reducing sampling rates on I/O channels can be one method for the Reasoning Process to gain

some CPU time. However, critical external signals must still be acknowledged and dealt with.

"The concepts of periodic and non-periodic tasks with varying importances and execution priorities

can be easily extended to include 1/0 processes. This implies that the Reasoning Process could treat the 1/0

Process as simply another task to be scheduled and executed by the Task Manager. The purpose of making

an explicit 1/0 Process in the overall design is to emphasize the fact that communications with the world

external to the system is inherent in all intelligent real-time systems.

4-5. Reasoning Process

Although the focus is on the architecture required for an intelligent real-time system, it is primarily

addressing the controls necessary and not the design of the intelligent agent that manipulates the controls.

It should not be taken as a given that the appropriate choice for an intelligent agent is always a rule based

expert system. Rather, the nature of the intelligent agent should be viewed as domain dependent. Possible

choices for an intelligent agent include straight procedural code designed for the particular domain, a rule

based expert system, or a neural network or connectionist approach. It is my belief that eventually, the

intelligent agent should incorporate all of these approaches.

However, this thesis effort is primarily addressing the Task Manager and some compromises have to

be made. For this reason, the Reasoning Process used is a rule-based system made up of CLIPS/Ada and

the appropriate interface code. CLIPS/Ada was available and provided the necessary functions with which

to prototype the system operation. In addition, both the source code and user manuals were available.

4-4

The basic approach is for the I/O Process to signal the occurrence of events in the environment by

asserting facts into the CLIPS fact base. CLIPS rules are then pattern matched against these facts and

actions taken as appropriate to guide the system into a desired state. Those actions can include directing the

Task Manager to create new tasks, modify current tasks, or remove current tasks. The Task Manager

responds to these actions and asserts new facts into the CLIPS fact base that describe the state of the

currently active task set. CLIPS rules are again pattern matched against these new facts and further actions

taken as appropriate to handle any problems. CLIPS is filling the role of a metaplanner for purposes of this

design.

4.6. Task Manager

The literature review and analysis of intelligent real-time systems conducted in Chapter 2 revealed

three broad categories of tasks the Task Manager needs to manage. These categories are periodic, singular.

and any-time. A periodic task arises from the necessity to either control some process or monitor for some

condition. Periodic tasks are fundamental to traditional real-time systems as exemplified by the large body

of knowledge covering real-time periodic task scheduling [Sprunt, 1989] [Sha, 1989] [Broger, 1989]

[Borger, 1989] [Sprunt, 1990] [Sha, 1991] [Lamont, 19911. Examples that produce periodic tasks are

things like maintaining a flight path in the presence of strong winds, or monitoring a radar track to ensure it

does not become a threat, or screen updates to video displays.

Singular tasks and any-time tasks are both types of non-periodic tasks. Examples that produce

singular or any-time tasks are things like taking off in an autonomous aircraft, or responding to an obstacle

that blocks the path of a mobile robot. In the autonomous aircraft, taking off usually only happens once

during the life of the mission and once accomplished, that task can be forgotten and purged from the active

task list. The mobile robot may encounter many obstacles while negotiating a route or may not encounter

any at all. In either case, there are generally specific task starting times, execution sequences, and deadlines

that must be adhered to.

The difference between singular and any-time tasks lies in the underlying algorithm encapsulated by

the task. A singular task arises from the asynchronous nature of events occurring in the real-world, or one

time steps in a control process. An any-time task is similar to singular task, in that it arises from the same

conditions, however, its solution method differs significantly. A singular task has a specific starting time

4-5

and after some time interval provides an answer. An any-time task also has a specific starting time, but

provides answers of increasing accuracy (or quality) the longer the task is allowed to run.

Additionally, one of the premises stated for an intelligent real-time system is the ability to trade-off

solution quality and execution time. Thus, each task is assumed to have a mandatory and optional part.

This concept, as outlined in section 2.2, provides one method of performing the solution

quality/computation time trade-off and is adopted fully in this approach. The mandatory part of each task

ensures that, at least, some answer is provided by the intelligent real-time system by the task's deadline.

The optional part of each task provides ways to increase solution quality, provided execution time is

allotted.

Finally, a method of mixing the task types together in one system needs some consideration. Real-

time systems generally cast both periodic and non-periodic tasks into the periodic framework [Sprunt,

1989] [Sprunt, 1990]. Using this approach, non-periodic tasks are given periodic time slices in which to

execute that to unfilled if not needed. The approach taken in this research is a slightly different

methodology that allows the Reasoning Process to control the amount of CPU time allotted to periodic

tasks, called the "budgeted periodic utilization". Non-periodic tasks are scheduled to execute in the

remaining CPU time.

The impact on task scheduling of these varying task types is enormous and is discussed in greater

detail in the following sections. However, the need to achieve real-time performance levies a common set

of constraints upon how each task type is dealt with. In particular, it is necessary to determine if a given

task set is feasible (i.e., can be. scheduled to meet its deadlines) and then to schedule the task set. Also,

since it is assumed that there are infeasible task sets, an infeasible task set needs to be detected, and a

feasible sub-set of the tasks scheduled.

4.6.1. Periodic Task Scheduling. Periodic tasks have a period, a mandatory and optional duration,

and a dynamically assigned importance which represents the current relevance of the task. The distinction

between importance, and priority is necessary to emphasize. The priority of a periodic task is the value

assigned to the task by the scheduler to ensure the task's execution characteristics. The task's importance is

a system wide value of the task's relevance to the current problem. The problem for the periodic task

scheduler then is to assign an execution priority to a task, given the task's importance, a scheduling policy,

and the current state of the system.

4-6

The rate-monotonic theory plays a critical role in fulfilling the job required of the periodic task

scheduler. As discussed in section 2.1, the rate-monotonic algorithm provides a method of determining the

feasibility of a given task set and a corresponding priority assignment method for a feasible task set. By

keeping track of the durations and periods of the periodic tasks, it is simple to see if an additional task can

be accommodated with a guarantee of its ability to meet its deadline. Table 4.1 below is an example set of

periodic task that is used to illustrate some of the potential methods to schedule periodic tasks.

Table 4.1. Example Periodic Task Set

Task Desired Max Period Mandatory Optional Total

Period Duration Duration Duration

"T1 33 50 1 1 2

"72 67 100 1 3 4

T3 67 100 2 4 6

T4 100 100 2 5 7

"75 360 450 4 6 10

""6 500 750 4 8 12

"T7 750 1000 3 15 18

"T8 1000 1500 3 11 1I

From Table 4.1, one can determine four possible periodic utilizations; (1) minimum mandatory

utilization, which is the absolute minimum periodic utilization that can be achieved, (2) maximum

mandatory utilization, (3) minimum optional utilization, and finally, (4) the maximum optional utilization,

which is the absolute maximum periodic utilization of the current task set. Figure 4.2 gives the relative

positions of the four values.

Note that there is no minimum period given for each task in Table 4.1. The desired period is

assumed to be the uinimlni period. It is inconsistent with real-time system design to propose periodic task

4-7

sets whose periods are not the minimum desired. This implies then that the periodic scheduler does not try

to maximize processor utilization simply because processing time may be available. Rather, the periodic

task scheduler tries to obtain the best solution quality (as a function of optional task portions scheduled and

executed) based upon available time.

Assuming the current set of periodic task consists of tasks Tj thru T7, the maximum utilization of the

example periodic task set is shown below. Note that the maximum utilization calculation uses the

minimum, or desired periods and both the mandatory and optional task durations.

Util. = + (m+°)
Pi

= (1 +o0) +(m 2 +o2)+ + +(m 7 +o)

A P2 P7
2 +4 +6 +7 10 12 18
33 67 67 100 360 500 750

= 0.3673

where mi and oi are the mandatory and optional durations of each task and pi is the period of each task in

the set. And similarly, the minimum utilization is calculated using the maximum periods and only the

mandatory part of the tasks.

n

Utai = .m .

P P2 P7

1 1 2 2 4 4 3
50 100 100 100 450 750 1000

= 0.0872

Equation 2.1 says that with 7 tasks, the utilization must be less than or equal to 0.728. However, in

our case we are restricting the CPU time allotted to periodic tasks to not exceed the current budgeted

periodic utilization. Thus Equation 2.1 must be adjusted to reflect this further restriction as follows:

+ n 2-n BU (4.1)

where BU is the budgeted periodic utilization. Assuming the current budgeted periodic utilization is set at

0.51, we get a required utilization of 0.728 * 0.51 = 0.3712. Since the current maximum utilization is less

than 0.3712 we can guarantee that the deadlines of our periodic task set are meet.

4-8

Adding T8 to the task set raises th' utilization to 0.3696. Using (4.1) the required utilization with 8

tasks and a budgeted periodic utilization of 0.51 is 0.3693, and we can no longer guarantee the ability to

meet the deadlines for the task set. However, we can still guarantee the deadlines of the task set if only the

mandatory parts of each task are executed, or the budgeted periodic utilization is raised. It is the job of the

Task Manager to schedule the task set as best it can and notify the Reasoning Process of its current status.

It is up to the Reasoning Process to either step in and adjust the task set, or let the Task Manager schedule

the task set.

Min Max
Mandatory Mandatory

Utilization
Min Max

Optional Optional

Figure 4.2 Some Calculable Periodic Utilizations

Using the minimum utilization, the maximum utilization and a dynamically determined budgeted

utilization, the scheduler should initially schedule tasks using the rate monotonic algorithm with both the

mandatory and optional portions of each task. When the currently budgeted periodic utilization is

exceeded, then a scheduling policy decision must be made, and that decision is left to the Reasoning

Process. From the periodic scheduler's point of view, it simply needs to detect a violation of the current

policy, and be able to implement a new scheduling policy.

Some intuitively obvious scheduling policies are (as mentioned above) scheduling both the

mandatory and optional task portions, or scheduling only the mandatory portions of tasks. Another task

scheduling policy that directly affects the system's ability to degrade gracefully is importance-ordered

scheduling. In importance-ordered scheduling, periodic tasks with higher importance need to be scheduled

at a higher execution priority then tasks of lower importance. Note that this approach is directly addressing

the issues of focus-of-attention and control reasoning.

4-9

The policy of scheduling both the mandatory and optional task portions can be viewed as the

'normal' case. Here the scheduler is trying to provide the best possible answer to every problem. When

computation time is in short supply, switching to mandatory-only task portions frees up the maximum

amount of processor time, at the cost of solution quality for all periodic tasks. When computation time is of

a minimum but solution quality is important, switching to an importance ordered schedule is desirable.

In summary, the periodic scheduler needs to assign execution priorities to a new task, based upon the

current scheduling policy. Thus, a scheduling step occurs whenever a new task is created. Additionally,

the periodic scheduler needs to provide the reasoning process with a variety of implementable scheduling

policies that achieve different goals. As mentioned above, these implementable scheduling policies should

include at least, mandatory only, optional and mandatory, and importance-ordered.

4.6.2. Non-Periodic Task Scheduling. Non-periodic tasks consist of a mandatory and optional

duration, a dynamically determined importance, a start time, a deadline, and possibly precedence

constraints. Additionally, non-periodic tasks can either be singular or any-time tasks. The job of the non-

periodic task scheduler then is to assign execution priorities to both singular and any-time tasks to ensure

tasks are completed on or before the task's deadline.

"The concepts used here are primarily derived from the work done by Liu, et al, [Liu, 1991]. Thus, as

is the case with all tasks in this system, each task is assumed to have a mandatory portion and an optional

portion. Again, as is the case with the periodic tasks, the job of scheduling non-periodic tasks can be

decomposed into determining the feasibility of scheduling a task set, and actually scheduling the tasks.

Before discussing the proposed scheduling methods, a word about the durations of the optional parts

of singular and any-time tasks is required. The optional duration of a singular task is a one time chunk of

time that the task needs to compute a solution that is more accurate than its mandatory part. The optional

duration of an any-time task is the amount of time it takes to cycle once through the solution refinement

process. Thus when a singular task's optional duration has elapsed, the task is completed. When an any-

time task's optional duration has elapsed, it is simply placed back into the set of tasks ready to execute until

its deadline has passed or some other terminating condition met

One is cautioned that the problem of optimally scheduling varying length tasks with precedence

constraints preemptively is an NP-complete problem [Coffman, 1976:Table 1.1]. A real-time system that

faces such a problem must make some simplifying assumptions, or place artificial constraints upon the

4-10

problem size. The approach taken in this thesis is to make some simplifying assumptions. Thus, optimal

solutions are not generated; rather a working scheduling is found quickly. This approach means that the

Task Manager does the on-line scheduling of the non-periodic task set using the assigned importances,

deadlines, and start times while the Reasoning Process does the off-line scheduling to determine what the

task set, importances, deadlines, and start times should be.

The scheduling policy used is, basically earliest deadline first as enhanced for on-line scheduling by

Baruah, et al, [Baruah, 19911. In addition, the earliest deadline first algorithm has been enhanced to deal

with the concept of mandatory and optional task parts. The algorithm assumes the existence of two priority

queues, one with tasks arranged with the earliest deadline first, and another arranged with the latest start

time first. The latest start time of a task is its deadline minus its mandatory duration if its mandatory part

has not completed, or its optional duration if it has.

When a new task arrives in the system, it is placed into the deadline and latest start time queues. The

scheduler removes the first task from the deadline queue and begins to execute it. If this is the first time

that task has been started, then it will be executing its mandatory part. When the task is completed, it is

removed from the latest start time queue, its latest start time for its optional part is calculated and the task is

reinserted into both the deadline and latest start time queue. As long as the system is not overloaded, the

latest start time of any task will never be exceeded. An overload situation is detected by the presence of a

task on the front of the latest start time queue whose latest start time is equal to the current time.

When an overload situation occurs, tasks are executed based both on the deadline of the task and its

importance. The choice of which task to execute must now be made. Assuming that the goal of the system

is to execute as many mandatory tasks as possible, then if the currently executing task is not executing its

mandatory part, and the task with a latest start time equal to the current time has not executed its mandatory

part, the currently executing task is preempted, and the other task is started. If both tasks are executing

their mandatory parts, then the currently executing task is checked to see if it has any slack time. If it does.

then again it is preempted and the other task is started. If it does not. then the task with the highest

importance is allowed to execute and the other task misses its deadline.

Using the latest start time queue allows the scheduler to easily detect overload situations.

Organizing tasks with both a mandatory part and an optional part allows the solution quality/computation

4-11

time trade off to be made. Combining the two allows one to def-me multiple scheduling policies that can be

adapted to the current situation.

The "feasibility test" consists primarily of determining if every task in the task set can at least

complete its mandatory part by its deadline. Given the task's mandatory duration, feasibility testing is

fairly straight-forward with one exception. That one exception deals with accounting for the periodic task

set's processor utilization. Figure 4.3 below illustrates the approach used to address this issue.

Projected , , [
Duration ;I I I

Mandatory II III

Duration r
I I I I

Periodic
Utilization

start t t2 t U t
time

Figure 4.3 Predicting Non-Periodic Task Actual Durations

Since the periodic utilization is the percentage of the CPU time that is unavailable for non-periodic

tasks, each non-periodic task's predicted execution time must include some amount of time waiting for the

periodic tasks to complete. The approach taken is to simply divide the task's mandatory or optional

durations by the processor utilization not used by the periodic tasks to predict the non-periodic task's actual

duration. Thus, the feasibility of a particular non-periodic task is determined by the equation:

VXT I tn + mi <5 di (4.2)
(1- pu)

where:

T = set of non-periodic tasks

di= deadline of task i

mi= mandatory duration of task i

4-12

pu = current periodic utilization

tn= time now

This method does have some problems, namely that the periodic utilization is an average value and not a

accurate reflection of any one particular duration. System testing has to examine this issue to detennine the

validity of this approach.

In summary, both the periodic and non-periodic schedulers need to determine the feasibility of a

given task set and assign execution priorities as directed by the current scheduling policy. Scheduling

policies implemented by the schedulers should include both policies for feasible task sets and importance

ordered scheduling for infeasible task sets.

4.7. Architecture Summary

The architecture as described in this chapter is a vision of how an intelligent real-time system should

be constructed. Research into some of the components has already been accomplished (as is the case of the

Reasoning Process by the Pilot's Associate program and outlined in Chapter 2). To add some validity to the

approach outlined in this chapter, a feasibility demonstration of the architecture is necessary, and in

particular, the functions of the Task Manager. This demonstration is described in the next chapter.

4-13

V. Feasibility Demonstration System

This chapter discusses in detail how the feasibility demonstration system is implemented. The

primary focus of the feasibility demonstration is on the development of the Task Manager. As mentioned

previously, the Task Manager is responsible for guaranteeing real-time performance of the system in

normal load conditions. In addition, it must respond appropriately to changing task importances and task

loads, and guarantee deadlines of a sub-set of tasks in overload situations. This chapter begins by

discussing some general implementation issues, then gives a brief description of how each of the other

architecture components is implemented. Following that, the data structures used in the Task Manager are

examined along with the transitions each task type can make. Finally, the procedures that make up the

Task Manager are reviewed.

5.1. General Implementation Issues

As with any demonstration effort, there are some implementation assumptions. In this effort, those

assumptions are as follows. First, the number of processes that are running at any one time is unknown.

This implies that the size of the problem is dynamic and should not be artificially constrained by some

maximum size limit. Dynamism at the implementation level usually means variable-sized data structures.

In this thesis effort, this translates to linked list structures, at cost of processing time and determinism.

Arbitrarily deciding up front, the size of the problem would greatly increase the speed of the system,

essentially reducing a large number of O(n) linked list operations to 0(1) array operations. Future work

should look at using predetermined data structure sizes and the performance issues associated with them.

Additionally, this thesis effort is unfunded and does not have primary access privileges to the

computer system the design is implemented upon. What that means is there are always tasks running in the

background, unknown to the Task Manager, that consume processor time. Thus, any testing of the Task

Manager's timing characteristics are subject to an unknown amount of error. The research has not

specifically addressed that issue in the scheduling algorithms used in this feasibility demonstration.

However, the impact of the additional, unknown processor loading is missed deadlines, and missed

deadlines are important events the system is designed to detect and handle.

5-1

5.1.1. Ada Compiler Choice. The choice of an Ada compiler plays a crucial role in this feasibility

demonstration. Since Ada tasking is a "big" part of the thesis effort, the compiler's support of tasking

primitives is an important issue. Chapters 3 and 4 expressed the need for dynamic priority assignments and

any Ada development environment used needed to support them. The feasibility demonstration uses the

Verdix Ada development environment over Meridian Ada for the following reasons.

First, Verdix Ada provides tasking primitives that allow direct control of the a task's priorities and

execution. Verdix provides the procedures Set-Priority, SuspendTask, and ResumeTask [VERDIX,

1990]. In addition, Verdix's has implemented the Priority Inheritance Protocol in their Ada run-time

system. The Priority Inheritance Protocol prevents a major problem with Ada tasking known as priority

inversion [Broger, 1989]. It is important that these parts are identified here because they are compiler

specific and not readily transportable to other Ada development environments.

These specific procedures, Set-Priority, SuspendTask, and ResumeTask all take the Verdix Ada

defined TaskID as input. Each procedure also returns a value that specifies the result of that particular

operation. In the cases of Suspend-Task and ResumeTask, the returned values are used to determine

whether or not a periodic task has missed its deadline, or if a problem exists with a non-periodic task. Also,

the range of task priorities that are available with the Meridian compiler is 20, while the Verdix compiler

allows for 100 different priorities and thus a finer priority resolution.

Additionally, Verdix Ada is available on most of the computer systems at AFiT and should continue

to be in the future. Finally, both CLIPS/Ada and Classic Ada (an object-oriented Ada pre-processor I

planned to use in developing the Environment Model) successfully compile with the Verdix Ada but not

with the Meridian Ada compiler [ClassicAda, 1989]. The choice of Verdix Ada thus allows the inclusion

of existing tools, provides readily transportable code within AF1T, eases the task control problem, and

allows a greater range of task priorities. For these reasons, Verdix Ada was chosen as the Ada development

environment.

5.1.2. Memory Management Issues and Impacts. Another implementation issue to be addressed in

any real-time system is memory management. This means two things: first, ensuring that the memory does

not become fragmented and thereby forcing a garbage collection problem; and second, ensuring that

available memory is used efficiently. For these reasons, all the data structures used in this feasibility

demonstration employ their own memory management. This means that once an item of that type has been

5-2

allocated from system memory, it is retained and reused by the data structure as needed and never returned

to the system's heap space.

The issue of memory management has a profound affect upon how tasks are used, created, and

deleted, presenting a significant challenge in the development of this feasibility demonstration. The actual

work of the system is assumed to be performed by the periodic, singular, and any-time tasks (see Chapter

3). In Ada, any task object that is declared within the scope of another task only gives up its memory when

the task that declares it terminates [AdaLRM, 1983:9] [Cohen, 1986:699-708]. Additionally, the language

specifically prevents a user-directed deallocation of the task's memory space [AdaLRM, 1983:13.10.1.8].

Since the Task Manager is where all tasks are created and deleted, no task returns the memory it consumes

until the Task Manager terminates, and since the Task Manager never terminates, no memory from a task

object is ever returned to the system. Given that a substantial number of tasks may be created during the

execution of this Intelligent Real-Time system, this could lead to a significant 'memory leak'.

The term memory leak is a euphemism used by real-time system designers to describe a situation in

which a program's memory is continually consumed without ever being replenished. The analogy to a leak

in a water bucket is clear. In the case of the Task Manager, task objects never return the memory

consumed, the more task objects that are declared, the more memory has 'leaked' out of the system.

Eventually, the system consumes all available memory and no additional tasks can be accommodated.

5.1.3. Dynamic Task Creation and Control. To combat the memory leak problem, a method was

developed that allowed tasks to be reused. The tasks managed by the Task Manager are divided into three

types: periodic, singular, and any-time tasks. Each of the three task types has its own Ada task type

declared for it. Each Ada task type is encapsulated in its own Ada package along with a buffer used to

communicate with tasks of that type. Each of the Ada packages provides externally visible procedures that

allow an external task (i.e., the Task Manager) to store items into the buffer, create new tasks of that type,

and remove items from the buffer. The Ada package specification for each task type additionally exports

an access type for that task type and a variables record type used to pass information from the Task

Manager to a specific task or the buffer and vice versa. The method used to do dynamic task creation,

reuse, and scheduling is a fundamental accomplishment of this thesis research. Figure 5.1 illustrates the

concept and how it is implemented.

5-3

Each of the tasks Pl1, S 1, A 1, etc., shown in Figure 5. 1, acts more as a wrapper or shell than a stand-

alone self-contained task. The task shell essentially provides the system with a reusable task that can be

directed to execute any of the procedures that are contained in that task type's package. As each task type is

declared or used, it is passed a parameter that specifies what procedure to use. The task type contains a

case statement for invoking the correct procedure based upon the passed parameter. Note that extending

this concept to include new or different task types, or additional procedures for a task type, is relatively

easy should it become necessary.

........ Periodic Tasks Package

Ts Contol.Bffe Procedure3

Task Paae Praceuree

ac eProcedure 3

T a k • • ;•... Task s Tontro P2f r................ .P•• l"....... 1 :

TakManager .PackagePocdue

e a y...........

............A... ::. tTim Tasks P a k
T as s B P e io d........

.....ates Time T s sPa k g

...

Manager 5. Packg Sutue ... Proedues

..

Each task also must provide at least two task entries called 'Initialize' and 'Change-Variables' that

accept the variables record defined for that task type. The Initialize entry is used by the externally visible

procedure Create, to instantiate a new task and provide the Task Manager with information about that task.

In particular, the Create/Initialize pair provides the Task Manager with the Verdix Ada defined TaskjlD,

and the execution times of the task. The Task_ID) is needed to use the Set-Priority, Suspend-Task, and

ResumeTask procedures and the durations are needed to determine the scheduling of the task.

The Change-Variables task entry is used by the Task Manager to put a previously used task 'shell'

into a new known initial state. It retums to the Task Manager the new durations of the procedure associated

with the task shell. Additionally, after either of these entries/procedures is called, the task suspends itself

using the Verdix Ada SuspendTask procedure. Note that all task shells not currently in use are assumed to

be in a 'suspended' state by the scheduler.

The reason for using the Suspend-Task procedure may not be obvious. Ada has a delay statement

that can be used to put a task to sleep until some specified duration has elapsed. The language standard

guarantees that the minimum time the task sleeps can be specified by the duration given to the delay

statement, but it does not specify the maximum amount of time the delay statement may consume. For

real-time systems, this is an unacceptable situation. Ensuring some exact period for a periodic task means

not relying upon the delay statement. Usually, a clock that generates an interrupt is used to ensure exact

durations. However, in this thesis, task execution and suspension is explicitly controlled using the Verdix

supplied SuspendTask and Resumelask procedures and a task dispatcher. The only place that a delay

statement is used to ensure task timings is in the task dispatcher. This was a deliberate decision to ensure

that the addition of an interrupt driven clock should be simple for any future work.

The existence of each of the Task Variables buffers provides the Task Manager an easy method to

control each task. When each task starts its execution cycle, it checks in its variables buffer for control

inputs from the Task Manager. The control inputs consist of a display flag, an execution mode, a procedure

identifier, and an Environment Model object identifier. Any-time task types also include a boolean variable

that tells the task whether or not it should continue executing, if it is executing its optional part. The

display flag is a debugging aid that tells the task shell whether or not to print out its execution statistics.

The execution mode is either mandatory or optional, and the procedure identifier and Environment Model

object identifier tell the task shell which procedure to execute and which piece of data in the Environment

Model to use.

5-5

5.1.4. Top Level Priority Assignments. The methods used to assign priorities to the different task

types is built upon a number of underlying assumptions, some previously stated, others not. Before we

begin the discussion of priority assignments though, the difference between priority and importance needs

reiterating. The priority of a task determines the execution order of the task and the importance of a task

has to do with its global relevance to the problem at hand.

The basic assumption that the system is at times overloaded which implies that at times the priority

of a task must be driven by its importance. Conversely, using the rate monotonic algorithm for periodic

tasks implies that when the system is not overloaded, for periodic tasks, importance is almost meaningless

to the schedulef. The problem faced in the implementation then is under what conditions and how should

different priority schemes be used, and what are some practical schemes to use.

Since the feasibility demonstration system is being implemented on a single processor system, the

priorities must also be used to simulate concurrency of the other architecture components. This causes

some problems when deciding upon the priorities to assign to the Reasoning Process, I/O Process,

Environment Model, System Model, and Task Manager. If the Reasoning Process is given a priority higher

than that of the periodic tasks, the assumptions used in the rate monotonic theory no longer hold. Since the

behavior of the Reasoning Process is not periodic, it would not be preempted by a periodic task. The result

is an inability to schedule periodic tasks to meet their deadlines. Additionally, any non-periodic task with a

priority higher than the periodic tasks would result in same problem. The I/O Process on the other hand

should execute at a relatively high priority to ensure rapid response to external events.

The compromise solution settled upon is shown in Figure 5.2. Of the 100 task priorities available,

eighty are allotted for periodic tasks (89-10) and four are allotted for non-periodic tasks (9-6). The

remaining twenty priorities are used for the 1/0 Process, the Task Manager, emergency tasks, non-

schedulable periodic tasks, and discarded non-periodic tasks. A discarded task is one that is no longer

doing useful work because it has missed its deadline. The possible task states and their meanings are

discussed in detail later in this chapter.

The 1/0 Process is assigned the highest priority (99) and the Task Manager the second highest (98).

Priorities (97-90) are reserved for emergency tasks. The allowance for emergency tasks gives the

Reasoning Process the ability to ensure that a specific task runs regardless of the current workload. The

Reasoning Process is assigned a static priority of five (5), to prevent it from interfering with the scheduling

5-6

and execution of both the periodic and non-periodic tasks. The impact of assigning the Reasoning Process

such a relatively low priority must be examined during testing. The Environment Model, System Model,

and Task Variables Buffer tasks are not assigned priorities since they basic,-,ly act as passive tasks, only

consuming CPU time when called. The implementation and use of priority inheritance protocols by the

Verdix Ada compiler ensures that these tasks do not block high priority tasks from executing.

Normal Importance
::::7:::..............::::::::::::.. :::....... :::::::....... :::::..I/O Process ..

Task Manager-------.
} Emergency Tasks {

Periodic Scheduleable
Tasks Periodic Tasks

Executing
Non-Periodic .
Preempted

Non-Periodic _ .
not use

not used not used

Reasoning Process

not usedNon-Schedulable_.....
Periodic Tasks

....:............-.-..--.........-::.:............:......Dicade Tasks

Figure 5.2 Normal and Importance Ordered Priority Ranges

"lhe Importance Ordered side in Figure 5.2 shows the result of overload (i.e., the existence of tasks

that can not be scheduled to guarantee completion by their deadlines) on the priorities assigned to the tasks

in the system. The effect of overload on task priorities is primarily restricted to periodic tasks. Periodic

tasks, whose importance is not high enough to put them in with the tasks scheduled rate monotonically, are

assigned the bottom priority in the system. They only execute when nothing else can. Note that it may

5-7

happen that there are not enough periodic tasks to use all of the periodic priorities. In this situation, those

priority values are not used.

Now that some of the general implementation issues have been addressed, the specifics of each

component's implementation will be discussed. Figure 5.3 is used to facilitate the discussion. Note,

however, that the focus of the feasibility demonstration is on the Task Manager and thus the other

components, with the exception of the Reasoning Process, are simply acting as place holders. Their

inclusion is simply to emphasize the requirement for their existence in a complete system and force the

feasibility demonstration system to address them, at least in a limited way.

5.2. System and Environment Model

As mentioned previously, both the System Model and Environment Model exist only as place

holders. Each of these models are implemented as Ada tasks that are passive in nature, meaning they only

perform work when an entry call is made to them. These two IRTS components require significant

additional work to fully implement the architecture as outlined in this thesis. However, they are not the

primary focus of the feasibility demonstration and thus little effort was expended in developing them or

addressing issues in their implementation.

5.3. I/0 Process

For the purposes of the feasibility demonstration, the I/ process simply sends intermittent event

messages to the Reasoning Process's EventMessage entry. There is no significance to the messages.

They are simply used to simulate the arrival of I/O and generate an appropriate response by the Reasoning

Process. For demonstration purposes, this approach suffices.

5.4. Reasoning Process Implementation

The Reasoning Process used in this feasibility demonstration is the expert system tool as

implemented by CLIPS/Ada. The purpose of this discussion is not to explain the inner workings of

CLIPS/Ada but rather the incorporation of it into the feasibility demonstration. Since the focus is not on

the use of an expert system shell, for a detailed description of CLIPS/Ada, refer to the CLIPS user's

5-8

manuals [CLIPS-Ada, 1991] [CLIPSRefMan, 1991a] [CLIPSRefMan, 1991b] [CLIPSRefMan, 1991c] and

[CLIPSUG, 1991].

The basic Ada Task structure of the Reasoning Process is shown in Figure 5.3. The Reasoning

Process Ada package consists of an Ada task to encapsulate the entire process and two CLIPS/Ada defined

packages, Embedded_CLIPS and User_Functions. EmbeddedCLIPS is the CLIPS/Ada inference engine,

modified as the name implies to be embedded in other applications instead of being a standalone

application. The UserFunctions package is a user-defined package that contains the interface between

CLIPS/Ada and any user-defined functions.

The user-defined functions developed and coded for this feasibility demonstration allow CLIPS/Ada

to add, modify, and remove tasks in addition to changing the budgeted periodic utilization. Each of these

functions is callable from either the right-hand-side or left-hand-side of rules defined in the CLIPS/Ada rule

format. Specific parameters needed to use these functions can be found in Appendix A and is not discussed

here. What is discussed are some problems that had to be overcome to write those user defined functions.

The first problem involved data types available in CLIPS/Ada and the conversion from external data

types to CLIPS/Ada data types. First, CLIPS/Ada explicitly defines what it uses for numbers as either

CLIPSReals or CLIPS-Integers. This forces the use of Ada explicit type conversions to communicate

numbers between CLIPS/Ada and external tasks. Second, a method of referring to a particular task needed

to be developed since CLIPS/Ada can not use the data type for Task Control Blocks. The approach taken

was to allow CLIPS/Ada to refer to tasks by their Task_I) using the Ada unchecked conversion procedure.

This approach required the Task Manager to search through the currently instantiated tasks to match a

Task_ID with a TaskControlBlock, potentially adding search time to any operation directed by the

Reasoning Process.

The Reasoning Process task that encapsulates CLIPS/Ada provides the interfaces between the other

IRTS components and CLIPS/Ada. Currently, those interfaces consist of 1) an entry to assert a fact into

CLIPS/Ada (supplied as a string), 2) an entry to receive Task Manager status updates from the Task

Manager, 3) an initialize entry to load the rules used by CLIPS/Ada, 4) an entry to signal when a task has

missed its deadline, 5) an entry used by the I/O Process to signal an external event, and 6) an entry to signal

that an infeasible task creation request has been made. The I/O Process event message entry is used by the

I/0 Process to insert facts into CLIPS/Ada that stimulate CLIPS/Ada to add, remove, or modify tasks.

5-9

..................

.....

....

....

The Reasoning Process internal task structure is arranged similarly to the system outlined in section

2.3.3. Although not implemented in the feasibility demonstration, almost all of the agenda management

methods as discussed in section 2.3.3 could be easily implemented. The implementation as it stands now

first checks for any entry calls to the Reasoning Process and performs any that exist. Next, one rule is

allowed to fire and the cycle then repeats. Future efforts should look at fully implementing the agenda

management methods developed under the Pilot's Associate program to improve and control the

performance of the Reasoning Process [Dodhiawala, 1988] [Lambert, 1991] [Lambert, 1990].

5.5. Task Manager Implementation Details

In this section the Task Manager is described in detail. The description begins with the data

structures used by the Task Manager. Next, periodic, singular, or any-time task state diagrams are

examined along with the events that trigger a transition from one state to another. Following that, the

assignment of periodic priorities is discussed. The Task Manager implementation discussion is concluded

with an explanation of each major procedure it contains.

5.5.1. Task Manager Data Structures. In order to understand how the Task Manager works, it is

important to outline its major data structures. The data structures consist primarily of priority deques

[Booch, 1986] and a record structure called a Task Control Block. A priority deque is a queue in which

items can be added or removed from either the front or the rear of the queue. In addition, the items in the

queue are arranged by some user defined 'priority'. When a new item is added to the queue, it is placed in

priority order; a new item with the same priority as an existing item can either be placed in front of or

behind the existing item. This equal priority ordering choice allows one to implement either LIFO or FIFO

ordering for items of equal priority. All items of equal priority added to a queue are added in FIFO order

(i.e., behind items of equal priority).

There are six priority deques that are the most important data structures used in the Task Manager.

They are as follows:

ReadyQueue - A deque of tasks that are ready to execute but not yet scheduled, arranged so

that the task with the earlier start times are ahead of the tasks with later start times.

5-11

0 LatestStartTimeQueue - A deque of singular and any-time tasks that are currently

executing, arranged such that tasks with earlier latest start times are ahead of tasks with later

latest start times.

0 Deadline_Queue - A deque of singular and any-time tasks that are currently executing,

arranged such that the tasks with the earlier deadlines are ahead of tasks with later deadlines.

0 Tasks byPeriod - A deque of only periodic tasks that are arranged with tasks of shorter

periods ahead of tasks with longer periods.

0 Periodic_ImportanceQueue - A deque of only periodic tasks, arranged so that tasks with a

higher importance (lower number) are ahead of tasks with lower importances.

Task ID_Queue - A deque of all tasks arranged by an integer representation of their Task ID.

This deque is used to find the task control block (described below) for a given Task ID.

There is one additional priority deque that is used for scheduling periodic tasks. It is a temporary

deque used when the system is overloaded. The algorithm for handling this situation involves searching

through each task in the PeriodicImportanceQueue and determining which tasks can be feasibly

scheduled. Those that can are added to the period-ordered temporary deque. Once all the important tasks

that can be scheduled are found, the temporary deque is used to assign them priorities.

A Task Control Block is an Ada variant record type that holds the information about each task that is

needed by the Task Manager. Figure 5.4 shows the Ada type declaration for the Task Control Block.

There are currently three variants of the record structure, one for each of the task types (periodic, singular,

and any-time). A variant record was used because each of the task types has different variables associated

with its scheduling and execution, but all the tasks have some common features. The common items

consist of the task's type, TaskID, integer TaskID, mandatory duration, optional duration, importance,

priority, starting time, latest starting time, time remaining, deadline, period and status.

The different task types do not use all the common parts of a TCB in the same way. Periodic tasks

use the deadline value as a stop time while non-periodic tasks have a period of zero. The variant part of a

TaskControlBlock contains a pointer to the task type it is controlling and another record structure that

holds the task specific variables needed by that task. Note in both cases these are data types exported by

5-12

the packaged specifications for the any-time, periodic, and singular tasks. With a basic understanding of

the data structures used, the task states can be discussed.

5.52. Task States and State Transitions. Although there are three types of tasks (periodic, any-time,

and singular), the scheduler handles the tasks as either periodic or non-periodic. All periodic tasks are

scheduled rate monotonically while non-periodic tasks are scheduled with a modified earliest deadline first

algorithm. This section describes the states each task type goes through and explain what events cause the

transition from one state to another. For this discussion, both the any-time and singular task types are under

the non-periodic task heading.

type TaskControlBlockType (Kind : TaskKindType PERIODIC
is record

Deadline : Calendar.Time ;
Importance : Integer ;
LatestStartTime : Calendar.Time ;
Mandatory_Duration : Duration ;
Next : Task Control BlockPtr
OptionalDuration : Duration ;
Period : Duration := 0.0 ;
Priority : System.Priority ;
Start Time : Calendar.Time
Started At : Calendar.Time ;
Status : Status-Type ;
Task Kind : GlobalDataTypes.TaskKindType ;
Task-ID : System.TaskID
Time Remaining : Duration
IntegerTaskID : Integer

-- A case is required for every kind of task that you wish
-- to be able to create.

case Kind is
when Global Data Types.Periodic =>

Periodic Variables : Periodic Variables Type ;
The Perio-dic Task Ptr : Periodic-TaskPtr

when GlobalData_-Types.AnyTime =>
AnyTimeVariables : AnyTimeVariablesType ;
The AnyTime TaskPtr : AnyTimeTaskPtr ;

when GlobalDataTypes. Singular =>
Singular Variables : SingularVariablesType ;
TheSingularTaskPtr : SingularTaskPtr

end case
end record ;

Figure 5.4 Task Control Block Ada Record Type Declaration

5-13

5.5 2.1. Periodic Task State Transitions. A periodic task can be in one of four states,

READY, EXECUTING, SUSPENDED, or COMPLETED. A periodic task in the READY state is ready to

execute, but its start time has not yet been reached. An EXECUTING periodic task has passed its start time

and is currently executing. A SUSPENDED periodic task is an executing task that has completed its work

for that period and has called the SuspendTask procedure. A COMPLETED periodic task has passed its

deadline or more correctly, its stop time, and is now available for reuse. Figure 5.5 shows each state and

labels the transition arcs from one state to another. The following discussion refers to Figure 5.5.

Event El occurs when a periodic task is added to the system and there are no available periodic task

'shells'. This event causes the Task Manager to use the Ada "new" command to allocate a new TCB for a

periodic task. The task's variables are set and the task is inserted into the Task_IIQueue, Ready-Queue,

"TasksByyeriodQueue, and PeriodicImportanceQueue. The task's status is then changed to READY.

Note that all periodic tasks not currently executing are in the suspended state.

Event E2 occurs when the task first makes it to the front of the Ready-Queue. When the task

reaches the front of the Ready-Queue and its start time equals the current time, it is started using the

ResumeTask procedure and its status changed to EXECUTING. Its next start time is calculated and the

task's TCB is reinserted into the Ready-Queue. When the task completes its work for the current period, it

suspends itself (event E3) and is considered in the SUSPENDED state. When it again makes it to the head

of the Ready-Queue, it is resumed again (event E4). The cycle continues until either the task is explicitly

told to stop or its stop time has past, as signaled by event E5. It is during this cycle that periodic task

missed deadlines are detected and signaled to the Reasoning Process. Again, the Resume_Task procedure

detects when the resumed task was not suspended and generates an exception.

Once event E5 has occurred, the task is placed on the free task list for periodic tasks. Note that it is

possible for a task to transition from the READY state to the COMPLETED state (event E5). This

transition occurs when the Task Manager is told to remove a task and the task has not yet started executing.

Also, since each task is in a known internal state when placed in the COMPLETED state, it can be reused

without any difficulty (event E6).

5-14

•Init

E2•E5

E3

Figure 5.5 Periodic Task State Transition Diagram

5-5.22. Non-Periodic Task State Transitions. Non-periodic tasks have seven possible states

because the scheduling of non-periodic tasks is more difficulL The non-periodic task state transition

diagram is shown in Figure 5.6. In the figure, the gray lines represent the normal, non-overloaded, non-

periodic task state transitions. Event El occurs when there are no any-time or singular task 'shells'

available and one is needed. Once the new task has been allocated, its variables are set, its status changed

to READY, and it is placed in both the Ready-Queue and the Task_IDQueue. Note that a READY non-

periodic task is not in the Latest_StartTime._Queue or the DeadlineQueue.

From the READY state, there are two possible transitions, event E2 and event E6. Both events occur

when the task reaches the head of the Ready-Queue. If the task has a deadline that is earlier than the

currently executing non-periodic task, then the task is placed in the EXECUT INGMANDATORY state

and is given the highest non-periodic priority (event E2). Additionally, what was the currently executing

task is preempted and depending on its state, it is either placed in the PREEMPTEDMANDATORY

(event E8) or PREEMPTEDOPTIONAL state (event El0). In addition, the preempted task's remaining

computation time and latest start time are calculated, and the task is inserted in both the

LatestStartTimeQueue and the DeadlineQueue. If the task coming from the Ready-Queue does not

have the earliest deadline (i.e., is not at the head of the DeadlineQueue), then its state is changed to

PREEMPTEDMANDATORY, its time remaining and latest start time are calculated, and it is inserted in

both the LatestStart_TimeQueue and the DeadlineQueue (event E6).

5-15

Init

Ready Completed•

FE6 5 P Ea4

aPreeXmpted GDA rY or EPTeO t
LatestStarMandatory tDanQ Eu 0arde. Optional ca

Ex ecut htg Et Executing
Em eanutiln Optional

Figure 5.6 Non-Periodic Task State Transition Diagram

Note that an EXECUTING _MANDATORY or EXECUTINGaOFTlONAL task is not in either the
Latest-StartTimeQueue or the Deadlineý_Queue. The reason is that in the normal case, the task has been

scheduled to execute because it has the earliest deadline and, therefore, it is assumed it executes to

completion. If it could not have completed before its deadline (i.e., its remaining computation time was

more than the time remaining until its deadline) then a missed deadline would have been signaled for the

task and the task's state changed to DISCARDED (event E9).

A task that is in the EXECUTING-MANDATORY state can either be preempted (event E8), or

complete its mandatory part and be scheduled to execute its optional part (event E3), or be DISCARDED

(event E9). Event E8 occurs either in the case outlined above where a newly "eligible to execute" task has

an earlier deadline, or the latest start time for a task has occurred and the EXECUTINGMANDATORY

5-16

task either has slack time (i.e., its execution time remaining is less than the time remaining until its

deadline) or the task at the head of the LatestStartTimeQueue has not completed its mandatory part (i.e.,

is in the PREEMPTEDMANDATORY state) and has a higher importance value than the current

EXECUTINGMANDATORY task.

If the preempted task is in the EXECUTINGMANDATORY state, and does not have any slack

time, then it misses its deadline (event E9). In this case, the task is placed in the DISCARDED state and its

priority set to the lowest available. Note that the task cannot immediately be placed back into the free list

because it is not in a known state. It must be allowcd to finish its current work, but not alter either the state

of shared data before it can be placed in the COMPLETED state (event E13) and in the free task list. Thus,

in addition to changing its state, the preempted task's continue flag is also set to false.

If a preempted task is in the EXECUTING_OPTIONAL state, and the task does not have any slack

time, then the task will miss its optional part deadline (event E9). This condition is different then missing

the deadline for its mandatory part in that there is still an answer available, only the quality of the answer is

affected. Thus, this case is not signaled to the Reasoning Process as a missed deadline. Note, however,

that the task is still discarded and only marked as COMPLETED when it signals completion (event E13).

When a task that completes its mandatory part, either while in the PREEMPTEDMANDATORY or

EXECUT INGMANDATORY state, new values for both its latest start time and computation time

remaining is calculated. Next, the task's TCB is placed in both the LatestStartTimeQueue and the

Deadline-Queue, and the task's state changed to PREEMPTED_OPTIONAL (event El0). If the task is at

the head of the Deadline_Queue then its state will be changed to EXECUrING_OPTIONAL and it will

begin executing its optional part (event E12).

The values used in the calculation of the remaining computation time and the latest start time depend

upon which state the task is transitioning from. When a task transitions from the READY state to either the

EXECUTINGMANDATORY or PREEMPTEDMANDATORY states (events E2 or E6), the value of

the task's mandatory duration is used to determine its latest start time and the initial value of the

computation time remaining. When the task transitions from either the EXECUTINGMANDATORY or

PREEMPTED_MANDATORY state to the PREEMPTEDOPTIONAL state (event El0), the task's

optional duration is used.

5-17

The effect of a task completing its optional part depends upon the type of task. A singular task that

completes its optional part from either the EXECUTING_OPTIONAL or PREEMPTED_OPTIONAL state

(event E4), is placed in the free task list and its state changed to COMPLETED (because it is possible for a

task in the EXECUTINGOPTIONAL state to block for some external process, it is possible for a

PREEMPTED_OPTIONAL to execute and complete). Note that the task itself will call the SuspendTask

procedure after it signals it is complete. When an any-time task completes its optional part, if there is

enough time to complete another complete cycle through an optional part, its computation time and latest

start time are adjusted and the task's TCB is reinserted into the LatestStartTimeQueue (event E14).

This process is repeated until the any-time task's deadline arrives.

5.5.3. Periodic Task Priority Assignments. A number of different methods of assigning periodic

priorities were investigated during the development of the feasibility demonstration. The investigation

focused the problem of assigning priorities when there are more tasks than priorities. Appendix B contains

a description of the various methods developed and the results of testing each method. Note that when

there are fewer tasks than periodic priorities, it is a simple matter to cycle through the

TasksByYeriodQueue to assign priorities.

The investigation concluded that for the feasibility demonstration system, the problem would be

solved by simply dividing the number of periodic tasks by the number of periodic priorities. The result of

that division is then used as the number of tasks to assign to each priority. Again the

TasksByPeriodQueue is cycled through, this time assigning the appropriate number of tasks the same

priority before moving on to the next priority.

5-5.4. Task Manager Entry Call Descriptions. The Task Manager is implemented as an Ada task

with five entry calls. The entry calls are Add-Task, Modify-Task, RemoveTask,

ChangePeriodic_Utilization, and TaskComplete. The task entries AddTask, Modifyjask,

RemoveTask, and ChangePeriodicUtilization are used by the Reasoning Process to control the current

task set. The Task.Complete entry is used by the any-time and singular tasks to signal the Task Manager

that they have completed executing. In addition, the Ada task is set up with a delay statement that

essentially places the Task Manager in an idle state when it is not in use. The following sections describe

the processing that takes place whenever a call is made to any of the task entries and explains how the Ada

select statement with a delay alternative is used in the Task Manager.

5-18

5.5.4.1. AddTask Entry Call. Task creation is done in response to a request from the

Reasoning Process to instantiate a new task. The process varies depending upon the type of task that

requires creation, but the basic process is: getting a Task Control Block, filling in the appropriate values,

determining the feasibility of the task, adding the new task to the appropriate priority queue, scheduling the

task, and finally sending the control variables to the task's control buffer.

Getting a new Task Control Block (TCB) is accomplished by the procedure GetTCB. Because the

system reuses task shells it first checks the free task list to see if there are any tasks of the required type

available for use. If there are, then the TCB for an unused task shell is modified to reflect the new

parameters as passed to the Task Manager. Since task starting and stopping is explicitly controlled by the

Task Manager, any task not currently in use (i.e., stored in the free task list) is in the suspended state.

Therefore, the ResumeTask procedure is called and a call to the task's Change-Variables entry is made.

The call to the task's Change-Variables entry returns to the TaskManager the task's durations and the

values are stored in the task's TCB. If there are no task shells of the right type available on the free task

list, then a new task of the appropriate type is instantiated and a similar call to the Change-Variables entry

is made. Note the task itself has again been placed in the suspended state after it responds to the

Change-Variables entry call.

Once the task's durations are returned to the Task Manager, a call to test the feasibility of the new

task is made. The feasibility check for a periodic task consists of determining if the task's period is greater

than the task's combined mandatory and optional durations and if at least its mandatory part can be

executed without exceeding the current budgeted periodic utilization. The feasibility check for a non-

periodic task consists of determining whether the task can complete its mandatory part before its deadline.

If the task is feasible, then it is placed into the ReadyQueue and the Reasoning Process is notified of the

new status of the task set.

Deciding what to do with a new task that is infeasible is an area where future work is required. The

chosen method is to make a distinction between periodic and non-periodic tasks. If a periodic task is

infeasible (i.e., the task set, which includes the new task, utilization exceeds the amount available), it is

added to the Ready-Queue anyway. The assumption is that at some future time there may be enough

processor time available to execute the task. Non-periodic infeasible tasks are simply removed from the

system altogether. The assumption made here is that the deadline is going to be missed, so the Reasoning

Process has to adjust its request.

5-19

If the new task is a periodic task, then the parameters used for assigning periodic priorities are

updated. In particular, if there are more periodic tasks than periodic priorities, then the ranges of periods

assigned to each priority is updated. If not, then there is no need to perform this operation and some time is

saved by not doing it. The periodic task's TCB is then added to the ReadyQueue. TaskByPeriod, and

the PeriodicImportanceQueue. If the new task is not periodic, then the number of active non-periodic

tasks is incremented by one and the task's TCB is added to the Ready-Queue.

New periodic tasks are also assigned an execution priority when they are added to the system. In

addition, periodic tasks are assigned a new execution priority whenever a periodic task is modified,

removed, or the budgeted periodic utilization is changed. The steps in assigning periodic priorities are as

follows:

1) If the current periodic utilization is below the utilization required for running all tasks with

their optional parts, then instruct each task to execute both its mandatory and optional parts.

Assign each task's priority rate monotonically. This condition is called ALL_OPTIONAL

in the program.

2) If the current periodic utilization is above the utilization required for running all tasks with

their optional parts, but below that required for all tasks to execute only their mandatory

parts, then assign all tasks to execute their mandatory parts and assign each task's priority

rate monotonically. Then loop through the PeriodicImportanceQueue adding optional

parts until the utilization equals the required utilization. This condition is known as

SOMEOPTIONAL in the program.

3) If the current periodic utilization is above the utilization required for running all tasks with

their mandatory parts, then loop through the PERIODIC_IMPORTANCEQUEUE adding

mandatory parts until the utilization equals the required utilization. Then assign this subset

of tasks to execute thei mandatory parts and assign each task's priority rate monotonically.

This condition is known as SOMEMANDATORY in the program.

5-5.4.2. ModifyTask Entry Call. A task can only be modified in a limited number of ways.

Only the task's period, importance, start-time, deadline, or display flag can be changed and only when the

task is in a certain state. Changing the task's procedure identifier is treated as adding another task and is

not allowed as an external modifying option by the current implementation. With the exception of

5-20

changing the display flag, all the changes may involve rescheduling most of the tasks in the system. Table

5.1 and Table 5.2 show the allowed modify operations for each task type and the potential effects of that

modification. However, the first operation is always finding the task's TCB in the TaskDQueue.

Table 5.1 Effects of Modifying Tasks and Periodic Utilization

Changed Item Task Variables Reschedule Reschedule Non-

Buffer Periodics Periodics

Display Flag

Deadline 4 4

Importance 4 4 4

Period 4 4 4

Start Time 4 4

Periodic Utilization 4 4 4

Modifying a periodic task's period or importance can have time-expensive consequences. It is

possible for the modification to require communicating a significant number of changes to the periodic

task's variables buffer. For example, changing a task's period enough to change the periodic condition

from ALLOPTIONAL to SOME_MANDATORY will require each periodic task's variables to be

changed. Additionally, since the Display Flag is specific to each task, and changes must be signaled to

each task, it also requires the task's variables record stored in the task's variables record buffer be changed.

Modifying a non-periodic task is not quite as expensive. The worst case occurs whenever the task

that is modified has started its execution. In this case, the task is modified and then a reevaluation of which

task to execute is made. This reevaluation is made by checking both the LatestStartTimeQueue and the

DeadlineQueue and executing the appropriate task.

5-21

Table 5.2 Allowed Modify Operations by Task Type and State

Task Type State Allowed to Modify Actions Taken

PERIODIC READY PERIOD Recalculate the Utilizations
Adjust the Tasks by Period Queue
Reassign the Periodic Priorities

STARTTIME Adjust the Start Time Ordered Queue

DEADLINE No Action Required

IMPORTANCE Adjust the Importance Ordered Queue

EXECUTING PERIOD Recalculate the Utilizations
Adjust the Tasks by Period Queue
Reassign the Periodic Priorities

DEADLINE No Action Required

IMPORTANCE Adjust the Importance Ordered Queue
Recalculate the Utilizations
Reassign the Periodic Priorities

COMPLETED NONE Error Condition

ANY-TIME READY DEADLINE No Action Required
SINGULAR

IMPORTANCE No Action Required

START_TIME Adjust the Start Time Ordered Queue

EXECUTINGMAN DEADLINE Stop Current Task

IMPORTANCE Place in LST and Deadline Queues

EXECUTIINGOPT DEADLINE Pick new Current Task

IMPORTANCE

PREEMPTEDMAN DEADLINE

IMPORTANCE

PREEMPTIEDOPT DEADLINE

IMPORTANCE

DISCARD7)ED None Error Condition

COMPLETFD None Error Condition

5-22

5-5.4.3. RemoveTask Entry Call. The actions taken when a task is removed depend upon the

task type and the task's current state. In any case, however, the Task_ID_Queue must first be searched to

locate the task's TCB. For a periodic task, the removal process is as follows:

1) Remove the task from the Tasks-byPeriod, PeriodicImportanceQueue, and Ready-Queue.

2) Adjust the values of the mandatory utilization, optional utilization, and required utilization

based upon the task's current execution mode.

3) Change the task's state to COMPLETED and place the TCB on the free task list.

4) Reschedule the remaining periodic and non-periodic tasks.

Note that there is no communication with the periodic task itself. This is possible because each task

suspends itself after it has performed its work and, in the worst case, the task terminates after the current

execution cycle it is performing. Allowing the periodic task to complete its cycle also ensures that the task,

and the data it is manipulating are in known states.

Removing a non-periodic task is only slightly more complicated, mainly because direct

communication with the task may be necessary. The procedure is as follows:

1) If the task's state is READY, then it has not started executing yet, so:

a) Remove the task from the Ready-Queue.

b) Change the task's state to COMPLETED and place the TCB on the free task list.

2) If the task's state is EXECUT.INGMANDATORY, EXECUTINGOPTIONAL,

PREEMPTEDOPTIONAL, or PREEMPTEDMANDATORY, then it has started executing,

so:

a) If the task's state is PREEMPTEDMANDATORY or PREEMPTED_OPTIONAL, then

remove the task from the DeadlineQueue and LatestStartTime_Queue. Otherwise. the

task is not in either queue.

5-23

b) Change the task's continue flag to FALSE and send the new value to the task's variables

buffer. Also change the task's state to DISCARDED.

c) If the task's state was EXECUTINGMANDATORY or EXECUTING_OPTIONAL, then

make the task at the head of the DeadlineQueue the currently executing task.

5.5.4.4. Change PeriodicUtilization Entry Call. Because the budgeted periodic utilization

value is used to schedule both periodic and non-periodic tasks, changing the budgeted periodic utilization

can be the most expensive entry call. Whenever the budgeted periodic utilization is changed, all periodic

tasks priorities are reassigned. This may require communicating execution mode changes to a large number

of periodic tasks.

Non-periodic tasks use the budgeted periodic utilization when calculating their execution times.

Once the new budgeted periodic utilization is set, the latest start time and time remaining for every non-

periodic task is recalculated. However, since the effect is the same on all non-periodic tasks (i.e., they are

each changed by the same factor) the current scheduling method is continued.

5.5.4.5. Task-Complete Entry Call. 7 he Task-Complete entry call is used by the non-

periodic tasks to signal the Task Manager that they have completed execution of their assigned part

(mandatory or optional). Again, the effect of the entry call depends upon the status of the task that calls the

entry. The effect of the call for the different task state's are as follows:

1) If the calling task's state is DISCARDED, then the task's TCB is placed on the free task list and

no other action is required.

2) If the calling task's state is EXECUTIINGMANDATORY or PREEMPTEDMANDATORY,

then the task's latest start time and time remaining is recalculated using the task's optional

duration and the task is reinserted into the Latest_StartTimeQueue and DeadlineQueue. The

task's state is changed to PREEMPTEDOPTIONAL. If the task's state was

EXECUTINGMANDATORY then a new non-periodic task is executed.

3) If the calling task's state is EXECUTINGOPTIONAL or PREEMPTED_OPTIONAL and the

task is a singular task, then the task's state is changed to COMPLETED and its TCB is placed

5-24

on the free task list. If the task's state was EXECUTING_OPTIONAL, then a new non-periodic

task is executed.

5.5.4.6. Task Dispatcher. The goal of the Task Dispatcher is to implement the schedule. It

does this by starting tasks from the Ready-Queue. Tasks are started using the ResumeTask procedure.

Additionally, the dispatcher will delay the Task Manager until the next scheduled action is to occur. This

delay statement ensures that other tasks are given processor time if needed. The dispatcher removes tasks

from the Ready-Queue and operates on them as follows:

1) If the task is a periodic task then:

a) If its stop time has not been exceeded, the task is resumed, its next start time calculated, and

it is placed back on the Ready-Queue.

b) If its stop time has been exceeded, the task's status is changed to COMPLETED and the

task's TCB is placed on the free task list.

2) If the task is non-periodic then:

a) If there is no currently executing task, set the task's status to

EXECUTINGMANDATORY and resume the task.

b) If there is a currently executing task, and the new task's deadline is before the currently

executing task's, preempt the currently executing task, set the new task's state to

EXECUIfINGMANDATORY and resume the new task.

c) If there is a currently executing task, and the new task's deadline is after the currently

executing task's, calculate the new task's latest start time and time remaining, place the task

in the LatestStartTimeQueue and Deadline-Queue, and change the new task's state to

PREEMPTEDMANDATORY.

Once all the tasks in the ReadyQueue that need to be started have been started, the time until the

next scheduling event is calculated. This time is the lesser of the first time in the

LatestStartTimeQueue, Deadline-Queue, or ReadyQueue. The delay is then used to 'sleep' the Task

Manager until that delay expires or an entry call to the Task Manager is made.

5-25

5.6. Implementation Summary

This chapter has spelled out the important details of the feasibility demonstration system. It has

discussed the compiler choice, memory management issues, task states, priority assignments, and

scheduling. The implementation handles both periodic and non-periodic tasks, detects missed deadlines

and overload situations, and responds to those conditions as required. In addition, it provides for the

dynamic creation and control of Ada tasks. These mechanisms provide "hooks" needed by the Reasoning

Process to specify the current task set and influence its run-time scheduling. These capabilities are crucial

to managing dynamic, real-time, periodic and non-periodic task scheduling.

The following chapter presents the results of testing done to confirm the operation of the developed

system and thus, the feasibility of the developed architecture. The code developed for the demonstration

system is included in Appendix A.

5-26

VI. Results and Analysis

Since accurate timing analysis is both impractical and unwarranted at this stage (becanse the design

is implemented upon a multi-user UNIX platform), the approach used to demonstrate feasibility is more an

existence proof of desired capability. In particular, the architecture includes, and this investigation is

focused on, a Task Manager that dynamically creates, schedules, and executes the real-time tasks of an

IRTS. Additionally, the architecture specifies that the Task Manager receives commands from the

Reasoning Process dictating which tasks are to be created, modified, or removed. In addition, the Task

Manager accepts some control inputs about how they should be scheduled. The following sections discuss

the results of capability tests beginning with an assessment of the overall architecture feasibility. Next, the

system's ability to dynamically create and control Ada tasks is addressed. Finally, the particular scheduling

policies discussed in previous chapters are examined.

6.1. Architecture Feasibility

•The question to be addressed is, "Does the feasibility demonstration lend one to believe that the

architecture as outlined in Chapter 4 is viable?" The answer, from testing of the system's performance to

date is, "yes, with some modifications". In particular, tests indicate that the current CLIPS/Ada based

Reasoning Process executes too slowly. The reasons for the inadequate performance of the Reasoning

Process have not been fully explored, primarily because the majority of the effort was in developing the

"Task Manager component of the architecture.

Figure 6.1 and Figure 6.2 show examples of the Task Manager overhead incurred by periodic and

non-periodic tasks of different durations. The graphs assume each task uses an existing task shell when

added, is modified once, and then removed. Figure 6.1 assumes an add task operation takes 0.004 seconds,

a modify operation takes 0.001 seconds, and a remove operation takes 0.001 seconds. Similarly, FigurE. 6.2

assumes an add task operation takes 0.004 seconds, a modify operation takes 0.003 seconds, and a remove

operation takes 0.001 seconds. The times are derived from testing results contained in Appendix A.

Assuming a desired maximum overhead of 10%, the results indicate the approach is feasible for systems

whose task durations are about 0.07 seconds or greater. However, two observations are in order.

6-1

0.6

"D 5

0.4

0• .3

E 0. 2

ID.0. 1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Task Duration (Seconds)

Figure 6.1 Example Periodic Task Manager Overhead versus Task Duration

0.8

0.7"cc

D02.6:

0511

0- ."----W- r- w

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Task Duration (Seconds)

Figure 6.2 Example Non-Periodic Task Manager Overhead versus"]Task Duration

6-2

First, because the feasibility demonstration is currently executing on a single processor machine, and

there are numerous higher priority tasks executing at any one time (the Reasoning Process priority is 5,

periodic priorities start at 10 and go to 90), the reasoning process, as implemented, does not receive

adequate processor time. Two conclusions can be drawn. One is the need for at least one additional

processor in the system, and the other is a different priority for the Reasoning Process. Raising the priority

of the Reasoning process in the current implementation is not a practical solution because the execution

time of the Reasoning Process is unpredictable. This means task deadlines could not be guaranteed if the

tasks had priorities below the Reasoning Process's. The better solution is a separate processor for the

Reasoning Process. Most IRTSs examined in the background research required multiple processors and

this feasibility demonstration has simply reiterated that requirement.

Second, because of the execution speed difference between the Reasoning Process and the Task

Manager, a "message buffer" should be used whenever the Task Manager communicates with the

Reasoning Process. As implemented currently, whenever the Task Manager wishes to communicate

information to the Reasoning Process, it makes an entry call directly to the Reasoning Process. If the

Reasoning Process is not ready to accept the entry call, the Task Manager will block. The inclusion of the

buffer would allow the Task Manager to complete its control actions independent of the Reasoning Process.

In addition, the Reasoning process could exert more control over its I/.

6.2. Dynamic Task Creation and Control

A major accomplishment of this thesis is the development of an ability to dynamically create and

control Ada tasks. One of the fundamental assumptions of this thesis is the existence of a plan/goal graph

or task network for the chosen domain. The mapping of that problem domain structure into a solution

requires the ability to dynamically create and control real-time tasks. The results of testing the feasibility

demonstration indicate that the methods outlined in Chapter 5 for just that purpose are feasible.

Figure 6.3 and Figure 6.4 summarize the testing results contained in Appendix A. Each graph shows

the minimum time required to: 1) adding a task that requires instantiating a new task shell, 2) adding a task

that reuses a task shell, 3) modifying a task, and 4) removing a task. The effect of UNIX multiprocessing

operating system is evident in the fluctuating minimum times. The graphs indicate the design approach is

feasible for applications whose real-time response requirements are on the order of milliseconds. However,

testing indicated a potential problem area.

6-3

0.02

0.018 - Add(New)

0.016 - Add (Reuse)

0.014 ý Modify

US 0.012 -- Rmv

_, 0.01

0.008

0.002 ••••, • • • l• •

0

0 20 40 60 80 100 120 140
Number of Active Periodic Tasks

Figure 6.3 Summary of Periodic Task Control Times

0.012

- Add (New)0.01
Add (Reuse)

Modify

0

0 20 40 60 80 100 120 140
Number of Active Non-Periodic Tasks

Figure 6.4 Summary of Non-Periodic Task Control Times

6-4

62.1. Dynamic Task Creation Results. Test results show the time required to add and schedule

either a periodic or non-periodic task is around 0.004 seconds. Graphs of the results are included in

Appendix A. The results can be interpreted to mean that the minimum response time for the feasibility

demonstration is 0.004 seconds. The time to add a task is not the same for reusing a task or instantiating a

new one.

The varying times to add a new task to the system is a problem. Testing results indicate that the

average time to add a task that reuses a task shell differs from the time to instantiate a new task shell by

about 0.004 seconds. The results were obtained by making numerous runs which create all new tasks, and

reuse tasks and averaging together the fastest ten times from each run. The key here is not the exact times

(as mentioned previously, exact timing numbers are subject to uncontrolled error), but rather the variance

between the two sets of times.

The reason for the variance is the extra overhead required to instantiate a new task, however, no

provisions have been made in the implementation to address it. What this means is that the Reasoning

Process does not currently have a method to determine how long it will take in terms of overhead to add a

new task. One solution to the problem is to provide the Reasoning Process with a running count of the

instantiated but unused task shells. Using this information, the Reasoning Process could adjust its

calculations of start times and execution times to account for the additional overhead if a new task is

required.

A second, and perhaps better approach, is to instantiate a predetermined number of each type of task

shell. This approach would allow a number of improvements. First, the variance in task creation times

would be eliminated. Second, it becomes easier to detect and handle potential memory shortages. If the

number of instantiated tasks is assumed to be the maximum allowed, an attempt to add a new task that

would exceed that maximum is easily detected. Once detected, it is then possible to determine which task,

if any, should be abandoned in favor of the new task.

6.3. Task Scheduling Evaluation

The evaluation of scheduling performance has to be looked at only to detect major deficiencies.

From that point of view, there were two significant problems encountered and one interesting anomaly.

The first problem dealt with the way missed deadlines were handled, and the second problem dealt with the

6-5

way durations for non-periodic tasks were calculated. The interesting anomaly dealt with the ordering of

periodic tasks with the same periods.

Originally, when a deadline violation was detected, a message was sent to the Reasoning Process

signaling the violation. In the case of a non-periodic task, the deadline violation was detected when the

task's TCB made it to the head of the LatestStart•Time-Queue, and the task dispatcher discarded the task.

For periodic tasks, a missed deadline was detected when the task was instructed to resume for its next

execution period. For non-periodic tasks, it was reasoned that the Reasoning Process would determine

whether or not to extend the deadline, cancel the task, or take some other action. The same was thought to

be the case for periodic tasks. For periodic tasks, this approach tuned out to be infeasible.

The problem stemmed from the method used to insure the periodicity of the periodic tasks; adding

the task's period to the last start time rather than the time the task is told to execute. What happens is a

cascading of missed deadlines because the time used to figure the next starting time of the periodic task

does not take into account any previous missed deadlines. In effect, it still tries to meet the deadline of the

next cycle even if it too has already past. -i ne correction for this problem was to restart the period from the

time the missed deadline was detected, thus "forgetting" the cycle(s) that missed its deadline.

The problem with non-periodic task durations stems from the method used to adjust the duration of a

non-periodic task to account for the processor time consumed by the periodic tasks. The current method

uses the formula:

or
(l-BU) (I-BU)

where mi is the mandatory duration of the task, oi is the optional duration, and BU is the current budgeted

periodic utilization. Because the budgeted periodic utilization is an average value, and not an accurate

reflection of a particular duration, as long as the non-periodic tasks are of relatively long durations, the

formula works well. However, it quickly fails to provide accurate predictions when non-periodic durations

are short.

One possible method to increase the accuracy of the predicted non-periodic durations is to create a

periodic task that is used to execute non-periodic tasks. This method would allow the Reasoning Process to

guarantee some minimum response times. By adjusting the duration and period of the task, the amount of

6-6

processor time allotted to non-periodic tasks could be better regulated. The new equation for calculating

the actual durations of non-periodic tasks becomes:

E,.- [21]T and Et. [~T
where T is the period of the task, c is the duration of the task, m and o are the mandatory and optional

durations of the non-periodic task respectively, and E4. , Eo are the predicted execution times of the non-

periodic task.

The anomaly dealing with tasks of the same period is illustrated in Figure 6.5. Because the ordering

in the queues is only based upon one field in the task's TCB, there are numerous cases where a "priority

inversion" can occur. This particular problem surfaced when a test case was run with all periods equal and

randomly generated importances. From Figure 6.5 it is clear that the priority assigned to each task will

depend solely upon its position in the queue, and not be influenced by its importance. The impact of this

priority inversion, however, is not clearly understood.

In general, for periodic tasks, the importance of a task only assures that the task will be in the

schedulable set, and the rate monotonic algorithm determines the priority of each task in that set. In the

case of all or some tasks in the schedulable set having the same period, priorities are assigned currently first

come first served. However, the set is still classified as schedulable and thus the priority assigned should

not matter. The testing conducted to date was unable to determine if the anomaly could cause problems.

Given better timing analysis tools and a more controlled execution environment, an understanding of the

impact of this inversion could be conducted. However, no timing faults could be traced to the inversion.

6.4. Code Complexity Analysis

In Chapter 3, improving algorithm efficacy was presented as a method of obtaining real-time

performance. This section examines the code that makes up the feasibility demonstration system in terms

of its time complexity. The analysis presented here should assist follow-on efforts in tuning the algorithms

used to obtain maximum performance from the system.

The results of the complexity analysis are shown in Table 6.1 and Table 6.2. In the tables, n is the

number of currently active periodic tasks and nz is the number of currently active non-periodic tasks. The

6-7

were no unexpected results; however, there are a few areas that could be improved upon. First, the number

of context switches is excessive in some places and second, implementation of the task buffers needs a

reexamination. The task control buffers are the primary area where a simple change in data structures can

lead to significant performance gains.

Both Table 6.1 and Table 6.2 contain a column for the number of context switches. Context

switches are important because they consume significant amounts of processor time, dwarfing the code

complexity numbers for all but very large values of n (the average time for a context switch on the

Sparcstation is about 0.00025 seconds). A context switch occurs whenever one task calls another (as is the

case with the Task Manager writing to the task control buffers). The code developed did not explicitly try

to reduce the number of context switches and this issue should be addressed in the future.

The task control buffers, as written, used a linked list for implementation convenience. A task that

wishes to get something from the buffer provides an index value. The task buffer then searches through the

link list buffer until it finds the index and returns that item to the calling task. The effect of this

implementation is an O(n) operation every time the buffer is accessed. Since every active task accesses the

buffer at least once during its execution, this is a very inefficient data structure.

Also, there is very little structure to the access sequences. For example, the periodic task control

buffer access pattern is determined by the period of the periodic tasks. If a periodic task terminates and

then is reused, its period is most likely to be different than the previous one. In addition, the set of items in

the buffer only changes when a new task is instantiated, not when a task shell is reused.

Tasks By Period Queue

Priority n 0 Priority n - 1

S. .Period = 2. 0 Seconds

Importance = High
Period = 2..0 Seconds

Importance = Low

Figure 6.5 Example of Execution Priority Inversion

6-8

Table 6.1 Time Complexity of Procedures Used By the Task Manager

Procedure Name Context Complexity for Complexity for

Switches Periodic Tasks Non-Periodic Tasks

AssignPeriodic_Priorities 3n 0(n 2)

Dispatch Tasks SA* O(n * SA) O(m * SA)

Feasible 0(1) 0(I)

FindTCB O(n + in) O(n + m)

GetTCB 2 0(3n + m) O(n + m)

Modify 3n** 0(n 2) 0(m)

NonPeriodicCompleted 1 O(m)

PeriodicPrioritesByImportance n 0(n 2)

P_Tasks_< PPriorities 2n 0(n 2)

P_Tasks_>_PPriorities 2n O(n 2)

Schedule 1 O(n + m) O(n + m)

Some PeriodicsOptional n 0(n 2)

UnSchedule 1*** O(n) O(m)

* SA stands for scheduling action, thus the order depends upon how many tasks need to start or stop at
the time the procedure is called.

•* only one context switch required for non-periodic task modify
•** only the non-periodic tasks require a context switch

Table 6.2 Time Complexity of Task Manager Entry Calls

Task Entry Name Procedures Called Context Complexity for Complexity for

Switches Periodic Tasks Non-Periodic Tasks

AddTask GetTCB, Feasible, 3n + 1 O(n2) O(n + m)
Schedule, UnSchedule

Modify-Task Find TCB, Modify, 3n + 1 O(n2) O(m)

Feasible

RemoveTask Find TCB, UnSchedule 1 O(n) O(m)

ChangeBU* AssignPeriodicPriorities 3n + I 0(n 2) O(m)

TaskComplete NonPeriodic_Completed I O(m)

• Changing the budgeted periodic utilization affects both the periodic and non-periodic tasks.

6-9

Given the random access patterns and the fairly stable number of buffer items, a balanced binary tree

data structure may be much more efficient. Since the search through a balanced binary tree takes O(log n)

time, the speed of the buffer access could be significantly enhanced. The increased efficiency of this

heavily used data structure should provide substantial performance gains. Note that the

TasksByIDQueue could also benefit from this approach for the same reasons.

Although testing was not specifically conducted on the use of the priority deques, their use appears

extremely beneficial. First, the removal or value testing of the item at the head of the queue takes O(1)

time. Also, although in the worst case the time to insert an item into the priority queue is of O(n), the

ability to start the insertion from either end of the queue structure can help reduce the average insertion

time. For example, when inserting items into the time ordered queues (nearest time at the head of the queue

and farthest time at the tail) starting from the tail of the queue can result in better average insertion times.

This is because time is always advancing in a real-time system and new tasks generally have starting times

later than tasks currently in the system. Of course, in one particular system the opposite could be true. It is

recommended that the current time ordered deques (ReadyQueue, DeadlineQueue, and

Latest_Start_TimeQueue) remain as deques until some overwhelming evidence is produced to replace

them with some other data structure.

6.5. Results Summary

Testing of the feasibility demonstration system has validated the approach taken. In particular, the

Task Manager is able to dynamically create and control tasks as directed by the Reasoning Process. The

scheduling overhead incurred is not excessive and additional algorithm and data structure improvements

will reduce the scheduling overhead further. The feasibility demonstration system clearly shows the

viability of the architecture developed.

However, some performance gains are possible. The task control buffer's internal data structures are

inappropriate in the current implementation. The same can be said for the TasksByIDQueue. Changing

these data structures to binary trees would improve the performance of these heavily used data structures.

In addition, an some effort should be expended to reduce the number of context switches required in the

current implementation.

6-10

VII. Conclusion

This research has taken the first steps of a much larger research effort into the development of

Intelligent Real-Time Systems. This chapter outlines the specific accomplishments of this thesis effort and

lays out some possible directions in which to continue the development of the architecture.

7.1. Summary

The primary result of this thesis effort is an intelligent real-time system architecture and top level

design. The majority of the effort expended in this thesis has gone into researching existing work in the

field and identifying what is required or common in most intelligent real-time systems and what appears to

be missing or needed. The architecture developed allows for inclusion of all the identified components.

Additionally, the implemented portions of the Task Manager directly address what is missing from other

intelligent real-time systems, namely guaranteed ability to meet task deadlines. Adding this ability to a

dynamic system involved development of the ability to dynamically create and control Ada tasks,

dynamically assign priorities to those tasks, and export task scheduling and execution controls to a

Reasoning Process', while maintaining a large degree of parallelism. The top level design and a robust

Task Manager has been implemented and the architecture's feasibility demonstrated.

Overcoming the problems associated with dynamic task creation and control in Ada is fundamental

to the development of an intelligent real-time system implemented in Ada. The method developed has

demonstrated the ability to solve a large number of the problems involved with dynamic task creation.

Namely, it allows for re-use of Ada task shells and helps prevent a potentially serious memory leak.

Additionally, communication between the dynamically created tasks and the rest of the system has been

addressed and a method using a "variables buffer" has been implemented and demonstrated. The methods

developed to control the execution of the dynamically created tasks "appear to work well" in the limited

tests conducted. However, the limited testing leaves unanswered a large number of questions regarding the

efficiency of the methods developed.

Perhaps the single most important control implemented is the dynamic execution priority assignment

scheme. The methods as implemented in the Task Manager are effective in solving the problems posed in

guaranteeing real-time performance. The system is able to schedule and execute both periodic and non-

7-1

periodic tasks in both overloaded and non-overloaded situations, thus demonstrating an ability to degrade

gracefully. To add this capability, non-standard Ada had to be used. Ada does not provide for dynamic

task priority assignments and thus Verdix Ada specific procedures had to be used. The use of Verdix Ada

specific procedures and functions limits portability of the system. However, this problem of dynamic task

priority assignments in Ada is being addressed and may change in the near future [I@Ada9X]. If and when

that happens, the methods used here will have to be reevaluated and most likely changed.

Exporting task scheduling and execution controls also was demonstrated and implemented. The

ability of the Reasoning Process to affect the current scheduling policies used without having to actually

implement the task scheduling itself allows the Reasoning Process to operate at a conceptually higher level.

Yet it can directly affect the execution of any particular task as it deems necessary. In effect, the Reasoning

Process is able to perform off-line scheduling while the Task Manager performs the on-line scheduling.

Again, the lack of an ability to "rigorously test" the implementation prevents optimizations to reduce the

overhead required to implement such abilities or characterize their behaviors.

Finally, the developed architecture has intentionally not sacrificed any inherent parallelism in order

to achieve some domain specific performance goals. The architecture developed here is easily

implementable on a multi-processor system with little, if any, re-writing of the code. The cost of

maintaining this parallelism is increased code complexity and the associated communication overhead.

The architecture as developed in this thesis effort is by no means the ideal one. Instead, this thesis

has presented one architecture and implementation and by doing so has charted a course for future work in

the field. The work done is leading edge research with a large number of unanswered questions and

potential problems. Like most difficult problems, this thesis effort has provided an incremental advance

towards a solution.

7.2. Recommendations

Since this research is not an end in itself, perhaps. the most important section is this one. The

recommendations presented here outline the research areas that still need to be addressed to fully

implement the developed architecture. Additionally, another potential path to achieve the same goal was

previously mentioned in Chapter 3 but not explored by this thesis: that path also deserves to be examined.

The following recommendations are divided into three parts: recommendations to improve the implemented

7-2

Task Manager, architecture components other than the Task Manager, and other implementation and

development issues.

7.2.1. Task Manager Recommendations. The Task Manager as implemented can easily be improved

upon. First, the system as implemented does not make use of the full rate monotonic theory. In particular,

the blocking time any particular task may suffer is not included in the current periodic task utilization

calculations (Theorems 3 and 4 from Chapter 2). The effect is reduced accuracy in the utilization

calculations. Also, no allowance for aperiodic tasks is implemented, but details of how to incorporate

support for aperiodic tasks are readily available and should be incorporated into the implementation

[Sprnmt, 1990].

The issues associated with determining the feasibility of the non-periodic tasks has not been

adequately addressed. As implemented, priorities of non-periodic tasks are assigned earliest deadline first,

and feasibility is only checked for tasks in isolation, not in conjunction with other non-periodic tasks of

varying importances. Incorporation of more robust (and correspondingly more time and space complex)

algorithms is required. Again, there exists a large body of knowledge dealing with these types of

algorithms to draw upon and allowances for incorporating these algorithms has been made in the existing

design [Liu, 1991] [Coffman, 19761.

Also, although memory management has been addressed, the problem has by no means been solved.

In particular, each data structure retains the maximum memory it has ever been allotted. This approach

may lead to problems when the system operates in an overloaded condition. There is currently no method

implemented to deal with Ada storage errors generated when no more memory is available. It is possible

for this condition to occur and a critical task is unable to execute. A method must be implemented to allow

for the reclamation of memory when required.

Finally, the problems with using the Ada delay statement for accurate timing control are well known

in the Ada community. The Task Dispatcher, as implemented, makes use of the Ada delay statement and

"should be corrected. Attaching a procedure to directly respond to timer generated interrupts should greatly

enhance the timing accuracy of the Task Dispatcher.

7.2.2. Other Architecture Components Recommendations. Neither the Environment Model, System

Model, or the reasoning logic of the Reasoning Process was implemented in this thesis effort, primarily

because they all appear to be very domain specific. Choosing a domain and developing the reasoning logic,

7-3

Environment Model, and System Model for that domain should be attempted. Choosing a particular

domain should greatly simplify the development effort by anchoring the system to some definable

performance criteria to measure the effectiveness of the system as a whole. Thus, not only can speed of

execution be evaluated against some requirement, but also the quality of the system's responses can be

evaluated.

The Environment Model should allow for efficient access by all currently executing tasks and

address the issues of data consistency and data timeliness. Given time, I had envisioned using an object

oriented Ada pre-processor (Classic Ada) for implementing the Environment Model. I believe an object

oriented approach most suitable for this type of model but clearly the issue requires investigation.

Additionally, the tradeoffs associated with placement of the data pertaining to the condition of the

environment into a single repository versus distribution among the various tasks should be investigated.

The System Model should allow the Reasoning Process the ability to make effective predictions of

future events and accurately reflect the current state of the system. A fundamental assumption of this thesis

effort was the existence of such a model in the form of a task network or plan-goal graph. Converting these

knowledge acquisition tools into an implementation usable by the reasoning process is required. The

envisioned method uses a graph structure with each node representing a task in the system. Future efforts

along these lines should closely examine the idea of temporal constraint networks when developing the

system model and the corresponding reasoning logic [Dechter, 1991].

"The current Reasoning Process makes only minimum use of existing techniques for agenda

management. The architecture, however, allows for relatively easy inclusion of most of the techniques

developed under the Pilot's Associate program and presented in section 2.3.3 of the thesis into design. By

moving the Reasoning Process to a separate processor and including the additional agenda management

techniques, I believe a significant overall performance gain can be achieved.

Finally, specific implementations of the I/O Process should be investigated to match performance

with system capabilities. In particular, the idea of reflexive behavior can be implemented by allowing the

I/O Process to instantiate tasks in response to external events directly, without having to report the event

first to the Reasoning Process. The correct mix of this type of reactive behavior versus reasoned behavior

should be investigated.

7-4

7.23. Implementation and Development Recommendations. The development of this thesis suffered

significantly from the lack of a dedicated or single user workstation. Because the system was developed on

a multi-user system, accurate timing information is virtually impossible to obtain. The multi-user system

used allows other processes to start and stop at anytime. Additionally, there is the additional overhead

associated with managing multiple user processes. It is highly recommended that any future effort use a

dedicated workstation operating in the single user mode to provide an accurate picture of the system's

performance and timing characteristics.

Although allowed for in the design, the system does not make use of multi-processors. Splitting the

system across multiple processors would greatly increase the performance of the system. I would

recommend moving the Reasoning Process to a separate machine as the first step. This move would

alleviate the problem of which priority to assign the Reasoning Process. Additionally, it should allow the

remaining components to act more as a traditional real-time system with the corresponding improvement in

its ability to meet task deadlines, while at the same time, allowing the Reasoning Process more

computational resources and hopefully a corresponding increase in overall system performance.

"Tools for the development of these types of systems should also be explored. In particular, tools to

debug multiple task Ada programs should be examined. Also useful, would be the development of a

system that allows for a 'rubber clock' so that system's view of the passage of time could be slowed. The

rubber clock would allow a programmer the ability to step through the program with the clock only

advancing by the time to execute each step and stopping while the programmer examines the results of that

step.

"T'he final recommendation is for a more rigorous specification process to be conducted.

Unfortunately, only modest software engineering techniques were applied in the development of the

feasibility dcmenastration system. Using a structured analysis and design method would provide better

measurement criteria, greater design visibility, and perhaps increased performance. Using this thesis and

the accompanying code as a guide, the task could be easily accomplished as another thesis effort.

7.3. Thesis Summary

The literature review reported in Chapter 2 identified the Environment Model, System Model, 1/0

Process, Reasoning Process, and Task Manager as the components necessary for an intelligent real-time

system. It also identified real-time task scheduling and deadline guarantees as the missing component in

7-5

most previous IRTSs. In addition, rate monotonic theory and imprecise computation scheduling were

discussed as ways to handle real-time task scheduling. Finally, Chapter 2 identified the general task types

any-time, singular, and periodic.

Chapters 3 discussed IRTS performance measures and design considerations. Speed,

responsiveness, timeliness, graceful degradation, data consistency, and solution quality are the performance

measures for intelligent real-time systems. Control reasoning, focus of attention, parallelism, and

improving algorithm efficacy are design considerations used when addressing the performance measures.

Chapter 3 concluded with the rationale for the design approach used.

Chapter 4 presented the top level view of an intelligent system architecture and discussed general

issues of the architecture. The methods used to perform on-line task scheduling of both non-periodic and

periodic tasks was presented. Chapter 5 discussed the details of the demonstration system implemented to

confirm the feasibility of the architecture presented in Chapter 4 and Chapter 6 discussed the results of the

feasibility demonstration.

This thesis effort has researched and developed a feasible architecture for use in creating an

intelligent real-time system. Dynamic task creation and real-time scheduling methods were developed and

successfully demonstrated. But the work is not complete. It is clear that further research is required along

a number of different paths. This research establishes a starting point and provides possible paths for

further work.

7-6

Appendix A. Test Results

This appendix contains numerous graphs that show the results of timing tests conducted on the

feasibility demonstration system. The effect of the underlying UNIX multiprocessing/time slicing

operating system can be clearly seen in all the graphs. The graphs are not intended to be accurate measures

of the systems performance, rather they are intended to validate the approach taken in this research. In

addition, a number of "queue dumps" are included that show the effects of adding, modifying, or removing

tasks from the Task Manager.

A.] Scheduling Overhead Timing Results

Figures A.1 through A.4 show a sample of the measured times to add, modify, and remove periodic

tasks. For these tests, a loop which first added a new task, then modified it was executed 150 tasks. Once

all 150 tasks were created, another loop was executed which removed all 150. Both loops were run 20

times and the minimum, maximum, and average times for each operation recorded. The vertical lines

represent the range of times obtained with the corresponding number of acitve tasks in the system. The tick

marks on each line represent the minimum, average, and maximum times. For these tests, there were no

non-periodic tasks currently active in the system.

Figures A.5 through A.8 show a sample of the measured times to add, modify, and remove non-

periodic tasks. The same testing method used for the periodic task tests was used to acquire these times.

For these tests, there were no periodic tasks currently active in the system.

A- 1

0
Lf)

--

0
"=.2

> E

4- ---4-

•-" <

,=J.2
II

I • •II W I11 IY I I ! 0

0 LO 0 LO 0 LO 0
cf) N m T- 0
0 o 0 0 0 0

6 0 0 6 0 6
(spuooes) euwJ

A-2

0

a-

a)

E

0 C~ T

ci~~ 6 t

A-3-

0

CO)

(0

a. .

%*-

E

coLOV) 0~
0 0 0 0 0 0 0 0 0
600 0 9 0 0 90 0

0000 6 6 0 6
(spuo3eS) owl I

A-4

0

F-

(0
r

05

-Cb'~G rlC, T

ci~~4- 00

0~~~ 0 0
(SPU03s) ew0

A-5

0

ca)

0

0

L. 0
0 Z

cbc

0- T- T 0 0 0 0 0 0
6 0 0 0 0 6 0 0 0 0

(spuo0es) ewlj

A-6

0
-Lf

0-

1- 0

____38s ow

A-7.

0

t

0

• ~o

1.1

<I-e

; oo o o

E
z

0 o- 0 0 0 0 0
6 0 0 0 0 0 0 0 0

0 0 6 06 6 0 0

(spu0oes) ew!l

A-8

0

(0

(0

z
>

q0-
0 00

0
.0
E

-~:3

0 cm 1 00
6 9 6 0 6 q

0 0 0
(spuooeS) ewlj

A-9

A.2. Schedules Produced

The following sample printouts show the affect of adding a periodic task whose additional utilization

causes the the periodic condition to change from ALL_OPTIONAL to SOMEOPTIONAL. Periodic task

kind 8 has mandatory duration of 0.008 seconds and an optional duration of 0.02 seconds. The first

printout shows the state of the periodic task set before the addition of Task ID 1280600 and the second one

shows the state of the periodic task set after Task ID 1280600 has been added. Note some tasks have been

deleted from the printout to make it easier to read.

Task ID Period Kind Importance Priority Mode

1233880 1.12100 8 46 90 OPTIONAL
848440 1.49900 8 13 89 OPTIONAL
976920 2.29800 8 24 88 OPTIONAL

1245560 2.39900 8 47 87 OPTIONAL
790040 2.43300 8 8 86 OPTIONAL
965240 2.59300 8 23 85 OPTIONAL
801720 3.42200 8 9 84 OPTIONAL
930200 3.78900 8 20 83 OPTIONAL
731640 3.93600 8 3 82 OPTIONAL

1058680 4.23600 8 31 81 OPTIONAL
1257240 4.34100 8 48 80 OPTIONAL

836760 4.36300 8 12 79 OPTIONAL
1035320 4.45700 8 29 78 OPTIONAL

860120 4.49800 8 14 77 OPTIONAL
1011960 4.60500 8 27 76 OPTIONAL

918520 4.96800 8 19 75 OPTIONAL
719960 5.13200 8 2 74 OPTIONAL
825080 5.40600 8 11 73 OPTIONAL
906840 5.57900 8 18 72 OPTIONAL
883480 5.64100 8 16 71 OPTIONAL
941880 5.90700 8 21 70 OPTIONAL
988600 6.09400 8 25 69 OPTIONAL
871800 6.61600 8 15 68 OPTIONAL

1187160 7.15300 8 42 67 OPTIONAL
1082040 7.47600 8 33 66 OPTIONAL
1047000 7.48300 8 30 65 OPTIONAL
1128760 7.51200 8 37 64 OPTIONAL

895160 7.52000 8 17 63 OPTIONAL
1210520 7.64000 8 44 62 OPTIONAL
1222200 7.68000 8 45 61 OPTIONAL
1000280 7.92000 8 26 60 OPTIONAL
1093720 8.14400 8 34 59 OPTIONAL
1070360 8.21900 8 32 58 OPTIONAL
1140440 8.24400 8 38 57 OPTIONAL
1152120 8.38500 8 39 56 OPTIONAL

778360 8.86800 8 7 55 OPTIONAL
1117080 8.90200 8 36 54 OPTIONAL

953560 8.92700 8 22 53 OPTIONAL
755000 8.97900 8 5 52 OPTIONAL
743320 9.37000 8 4 51 OPTIONAL

1175480 9.79600 8 41 50 OPTIONAL
813400 9.82100 8 10 49 OPTIONAL

1163800 10.03100 8 40 48 OPTIONAL
1268920 10.12300 8 49 47 OPTIONAL

A-10

1105400 10.13400 8 35 46 OPTIONAL
1198840 10.46100 8 43 45 OPTIONAL

766680 10.68200 8 6 44 OPTIONAL
1023640 10.76600 8 28 43 OPTIONAL

Periodic Utilization => 2.75986964545906E-01
Mandatory Utilization => 8.23119017066736E-02
Optional Utilization => 2.75986964545906E-01
Required Utilization => 2.79270430800456E-01
Periodic Utilization Budget => 4.00000000000000E-01
Current Periodic Condition => ALL OPTIONAL

Task ID Period Kind Importance Priority Mode

1233880 1.12100 8 46 90 OPTIONAL
848440 1.49900 8 13 89 OPTIONAL
976920 2.29800 8 24 88 OPTIONAL

1245560 2.39900 8 47 87 OPTIONAL
790040 2.43300 8 8 86 OPTIONAL

1280600 2.55800 8 49 85 MANDATORY
965240 2.59300 8 23 84 OPTIONAL
801720 3.42200 8 9 83 OPTIONAL
930200 3.78900 8 20 82 OPTIONAL
731640 3.93600 8 3 81 OPTIONAL

1058680 4.23600 8 31 80 OPTIONAL
1257240 4.34100 8 48 79 MANDATORY

836760 4.36300 8 12 78 OPTIONAL
1035320 4.45700 8 29 77 OPTIONAL

860120 4.49800 8 14 76 OPTIONAL
1011960 4.60500 8 27 75 OPTIONAL

918520 4.96800 8 19 74 OPTIONAL
719960 5.13200 8 2 73 OPTIONAL
825080 5.40600 8 11 72 OPTIONAL
906840 5.57900 8 18 71 OPTIONAL
883480 5.64100 8 16 70 OPTIONAL
941880 5.90700 8 21 69 OPTIONAL
988600 6.09400 8 25 68 OPTIONAL
871800 6.61600 8 15 67 OPTIONAL

1187160 7.15300 8 42 66 OPTIONAL
1082040 7.47600 8 33 65 OPTIONAL
1047000 7.48300 8 30 64 OPTIONAL
1128760 7.51200 8 37 63 OPTIONAL

895160 7.52000 8 17 62 OPTIONAL
1210520 7.64000 8 44 61 OPTIONAL
1222200 7.68000 8 45 60 OPTIONAL
1000280 7.92000 8 26 59 OPTIONAL
1093720 8.14400 8 34 58 OPTIONAL
1070360 8.21900 8 32 57 OPTIONAL
1140440 8.24400 8 38 56 OPTIONAL
1152120 8.38500 8 39 55 OPTIONAL

778360 8.86800 8 7 54 OPTIONAL
1117080 8.90200 8 36 53 OPTIONAL

953560 8.92700 8 22 52 OPTIONAL
755000 8.97900 8 5 51 OPTIONAL
743320 9.37000 8 4 50 OPTIONAL

1175480 9.79600 8 41 49 OPTIONAL
813400 9.82100 8 10 48 OPTIONAL

1163800 10.03100 8 40 47 OPTIONAL
1268920 10.12300 8 49 46 MANDATORY
1105400 10.13400 8 35 45 OPTIONAL
1198840 10.46100 8 43 44 OPTIONAL

766680 10.68200 8 6 43 OPTIONAL
1023640 10.76600 8 28 42 OPTIONAL

A-11

Periodic Utilization => 2.77404244072816E-01
Mandatory Utilization => 8.56348102289566E-02
Optional Utilization => 2.87128481355913E-01
Required Utilization => 2.79229184559615E-01
Periodic Utilization Budget => 4.OOOOOOOOOOOOOOE-01
Current Periodic Condition => SOMEOPTIONAL

The following printouts show the affects of modifying a periodic task. In this case, the period of

Task ID 801720 has been changed from 2.422 seconds to 3.422 seconds and its importance value decreased

by one. Note its priority has been changed to reflect its new period along with the priority of Task ID

790040.

Task ID Period Kind Importance Priority Mode

801720 2.42200 8 8 90 OPTIONAL
790040 2.43300 8 8 89 OPTIONAL
731640 3.93600 8 3 88 OPTIONAL
719960 5.13200 8 2 87 OPTIONAL
778360 8.86800 8 7 86 OPTIONAL
755000 8.97900 8 5 85 OPTIONAL
743320 9.37000 8 4 84 OPTIONAL
766680 10.68200 8 6 83 OPTIONAL

Periodic Utilization => 4.83728493284041E-02
Mandatory Utilization => 1.44269901505767E-02
Optional Utilization => 4.83728493284041E-02
Required Utilization => 2.89624744528825E-01
Periodic Utilization Budget => 4.OOOOOOOOOOOOOOE-01
Current Periodic Condition => ALLOPTIONAL

Task ID Period Kind Importance Priority Mode

790040 2.43300 8 8 90 OPTIONAL
801720 3.42200 8 9 89 OPTIONAL
731640 3.93600 8 3 88 OPTIONAL
719960 5.13200 8 2 87 OPTIONAL
778360 8.86800 8 7 86 OPTIONAL
755000 8.97900 8 5 85 OPTIONAL
743320 9.37000 8 4 84 OPTIONAL
766680 10.68200 8 6 83 OPTIONAL

Periodic Utilization => 4.49341776161001E-02
Mandatory Utilization => 1.34014213942755E-02
Optional Utilization => 4.49341776161001E-02
Required Utilization => 2.89624744528825E-01
Periodic Utilization Budget => 4.OOOOOOOOOOOOOOE-01
Current Periodic Condition => ALLOPTIONAL

The following printout traces modify operations on an active set of any-time tasks. There are two

sets of data for each modify operation, one taken immediately before the modify, and one immediately

after. During the modify, a task's deadline and importance is changed. The numbers in the status column

represent the task's current state. The number to state translation is as shown in Table A.1. Not tha at

times, the time remaining for a task jumps back up to 0.100 seconds. The reason for the jumps is the

A- 12

method used to handle errors induced by the UNIX multitasking operating system. In order to insure that

the time remaining never goes negative, a check in the code detects this situation and sets the time

remaining to 0.100 seconds.

Table A.1 Printout Status Number to State Name Translation

Status Number State Name Applies to

0 READY All

1 EXECUTING periodic tasks

2 EXECUTINGMANDATORY non-penodic tasks

3 EXECUTINGOPTIONAL non-periodic tasks

4 PREEMPTEDMANDATORY non-periodic tasks

5 PREEMPTED_OPTIONAL non-periodic tasks

6 DISCARDED non-periodic tasks

7 COMPLETED non-periodic tasks

>>>>>>>>> The Time Now is => 60175.427 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.200 60175.363 60178.886 60175.422 1 2

>>>>>>>>> The Time Now is => 60175.453 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.178 60175.363 60179.886 60175.422 2 2

>>>>>>>>> The Time Now is => 60175.727 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 1.760 60175.363 60179.886 N/A 2 5 60178.126
761232 0.100 1.000 0.200 60175.674 60185.718 60175.725 2 2

>>>>>>>>> The Time Now is => 60175.757 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 1.760 60175.363 60179.886 N/A 2 5 60178.126
761232 0.100 1.000 0.178 60175.674 60186.718 60175.725 3 2

>>>>>>>>> The Time Now is => 60176.139 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 1.321 60175.363 60179.886 N/A 2 5 60178.565
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 0.200 60175.983 60185.558 60176.135 3 2

A-13

>>>>>>>>> The Time Now is => 60176.169 Periodic Utilization Budget => 5.OOE-01 <<<<<<«<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 1.321 60175.363 60179.886 N/A 2 5 60178.565
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 0.178 60175.983 60186.558 60176.135 4 2

>>>>>>>>> The Time Now is => 60176.431 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 1.122 60175.363 60179.886 N/A 2 5 60178.764
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 0.200 60176.392 60188.011 60176.426 4 2

>>>>>>>>> The Time Now is => 60176.474 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 1.122 60175.363 60179.886 N/A 2 5 60178.764
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 0.163 60176.392 60189.011 60176.426 5 2

>>>>>>>>> The Time Now is => 60176.735 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.909 60175.363 60179.886 N/A 2 5 60178.977
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/k 5 5 60187.011
796272 0.100 1.000 0.200 60176.713 60186.154 60176.734 5 2

>>>>>>>>> The Time Now is => 60176.749 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.909 60175.363 60179.886 N/A 2 5 60178.977
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 0.187 60176.713 60187.154 60176.734 6 2

>>>>>>>>> The Time Now is => 60177.109 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 0.200 60177.015 60178.735 60177.108 6 2

>>>>>>>>> The Time Now is => 60177.153 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 0.165 60177.015 60179.735 60177.108 7 2

>>>>>>>>> The Time Now is => 60177.415 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining •5art-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 1.777 60177.015 60179.735 N/A 7 5 60177.958
819632 0.100 1.000 0.200 60177.374 60180 281 60177.414 7 2

A-14

>>>>>>>>> The Time Now is => 60177.432 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60185.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 1.777 60177.015 60179.735 N/A 7 5 60177.958
819632 0.100 1.000 0.185 60177.374 60181.281 60177.414 8 2

>>>>>>>>> The Time Now is => 60177.729 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 1.417 60177.015 60179.735 N/A 7 5 60178.318
819632 0.100 1.000 2.000 60177.374 60181.281 N/A 8 5 60179.281
831312 0.100 1.000 0.200 60177.651 60188.236 60177.728 8 2

>>>>>>>>> The Time Now is => 60177.748 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 1.417 60177.015 60179.735 N/A 7 5 60178.318
819632 0.100 1.000 2.000 60177.374 60181.281 N/A 8 5 60179.281
831312 0.100 1.000 0.183 60177.651 60189.236 60177.728 9 2

>>>>>>>>> The Time Now is => 60178.025 Periodic Utilization Budget => 5.00E-01 <<<«<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 1.111 60177.015 60179.735 N/A 7 5 60178.624
819632 0.100 1.000 2.000 60177.374 60181.281 N/A 8 5 60179.281
831312 0.100 1.000 2.000 60177.651 60189.236 N/A 9 5 60187.236
842992 0.100 1.000 0.200 60177.971 60183.258 60178.022 9 2

>>>>>>>>> The Time Now is => 60178.069 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 1.111 60177.015 60179.735 N/A 7 5 60178.624
819632 0.100 1.000 2.000 60177.374 60181.281 N/A 8 5 60179.281
831312 0.100 1.000 2.000 60177.651 60189.236 N/A 9 5 60187.236
842992 0.100 1.000 0.164 60177.971 60184.258 60178.022 10 2

>>>>>>>>> The Time Now is => 60178.335 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 0.926 60177.015 60179.735 N/A 7 5 60178.809
819632 0.100 1.000 2.000 60177.374 60181.281 N/A 8 5 60179.281
831312 0.100 1.000 2.000 60177.651 60189.236 N/A 9 5 60187.236
842992 0.100 1.000 2.000 60177.971 60184.258 N/A 10 5 60182.258
854672 0.100 1.000 0.200 60178.301 60182.336 60178.324 10 2

>>>>>>>>> The Time Now is => 60178.432 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137

A-15

761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 E0184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 0.926 60177.015 60179.735 N/A 7 5 60178.809
819632 0.100 1.000 2.000 60177.374 60181.281 N/A 8 5 60179.281
831312 0.100 1.000 2.000 60177.651 60189.236 N/A 9 5 60187.236
842992 0.100 1.000 2.000 60177.971 60184.258 N/A 10 5 60182.258
854672 0.100 1.000 0.146 60178.301 60183.336 60178.324 11 2

>>>>>>>>> The Time Now is => 60180.039 Periodic Utilization Budget => 5.OOE-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 6
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 6
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 6
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 6
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 6
807952 0.100 1.000 0.100 60177.015 60179.735 N/A 7 4 60179.635
819632 0.100 1.000 2.000 60177.374 60181.281 N/A 8 6
831312 0.100 1.000 2.000 60177.651 60189.236 N/A 9 6
842992 0.100 1.000 2.000 60177.971 60184.258 N/A 10 6
854672 0.100 1.000 2.000 60178.301 60183.336 N/A 11 6
878032 0.100 1.000 0.200 60179.983 60184.180 60180.036 1 2

>>>>>>>>> The Time Now is => 60180.101 Periodic Utilization Budget => 5.OOE-01 '<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 6
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 6
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 6
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 6
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 6
807952 0.100 1.000 0.100 60177.015 60179.735 60180.099 7 2
819632 0.100 1.000 2.000 60177.374 60181.281 N/A 8 6
831312 0.100 1.000 2.000 60177.651 60189.236 N/A 9 6
842992 0.100 1.000 2.000 60177.971 60184.258 N/A 10 6
854672 0.100 1.000 2.000 60178.301 60183.336 N/A 11 6
878032 0.100 1.000 0.166 60179.983 60184.180 N/A 1 6

A-16

Appendix B. Periodic Priority Assignment Methods Investigated

Using rate monotonic theory to schedule the periodic tasks requires that priorities be assigned based

upon the period of each task. In theory, this sounds simple, but in practice, additional problems arise. In

particular, a problem arises when there are more periodic tasks than there are periodic priorities. The

investigation undertaken to solve that problem is outlined in the following sections.

B.J. Periodic Priority Assignment Problem and Potential Solution Methods

The problem of assigning priorities to periodic tasks is compounded by the dynamic nature of the

system. At any one time there may be only a handful of tasks, with more than enough distinct priorities to

assign a unique priority to each task. At other times, there may be many more periodic tasks than periodic

priorities. When this condition occurs, the problem becomes one of determining which tasks to assign to

which priority 'bin'. The problem is better illustrated in Figure B.I.

By examining the figure, four possible groupings for the tasks stand out. This tends to put a large

number of tasks into the priority bins for tasks of shorter periods and hardly any in the priority bins for the

tacks with longer periods. A solution might be to assign tasks based upon some predetermined method or

try to calculate the best method for the current situation. It is possible for the situation shown above to be

reversed, and have a large number of tasks with long periods and only a small number of tasks with short

periods. Four methods were developed to handle the problem under different conditions. No attempt is

made to determine which is the best, rather this research illustrates that different solutions are possible and

should be examined in future work. The four methods developed are called Static, Linear, Normal

Distribution, and Simple.

The simple method is for the trivial case were the number of periodic tasks is less than the number of

periodic priorities. A count of the number of currently active periodic tasks is always maintained by the

system and the simple method is always employed if it can be. This method meets the theoretical basis

used in the rate monotonic algorithm and assigns each periodic task a distinct priority and is the ideal

method of assigning priorities when using the rate monotonic algorithm. The other methods are described

in the following sections.

B-1

Tasks

Figure B.1 Example Periods of aTask Set

B.I.). Periodic Priorities Normal Distribution Method. The Normal Distribution method is

designed around the assumption that the periodic task's periods will, as the name implies, have a statistical

normal distribution. Thus, the middle priorities have more tasks than either the highest or lowest priorities.

There is no empirical basis for this assumption and the purpose of implementing it is to show how

statistical distributions can be used to help assign priorities in a dynamic system. Other distributions are

likely in any given domain. Figure B.2 illustrates the concept.

The algorithm used to implement the normal distribution method uses the standard formula's to

calculate the mean and variance [Allen, 19901. The mean and standard deviation can be quickly calculated

with each new task that is added or removed. Once they are calculated, the values of the periods that

belong to each priority bin are calculated by dividing the spread between ±:2 standard deviations from the

mean by the number of periodic priorities minus two. The highest periodic priority is used for tasks with

periods that are less than 2 standard deviations below the mean period, and the lowest periodic priority is

used for tasks with periods that are greater than 2 standard deviations above the mean period.

B.1.2. Periodic Priorities Linear Methor. The Linear Method of assigning periodic priorities is

illustrated in Figure B.3. The basic idea is to assign period ranges to the different priorities using a straight

line equation generated by using the task with the longest period. Note that the periodic task with the

longest period is simply the task at the tail of the TasksByPeriodQueue.

B-2

Mean

o Above Mean

z

Highest Lowest

Priority

Figure B.2 Periodic Priorities Using Normal Distribution

Maximum
Period

Highest Lowest

Priority

Figure B.3 Periodic Priorities Using Linear Method

B-3

The slope of the line generated by starting at the origin and proceeding to the maximum period (refer

to Figure B.3), is simply equal to the maximum period divided by the number of periodic priorities. Once

this slope is known, calculating the range of periods associated with each priority is a matter of plugging

each priority into the straight line equation y = mx, where x is the priority and m is the slope calculated

above and assigning the result as the maximum period for any task with that priority.

Unlike the Normal Distribution method, this method assumes that task periods is evenly distributed.

"The result of using this method is to split the tasks into the different priority bins so that the higher priority

bins have fewer tasks than the lower priority bins.

B.1.3. Periodic Priorities Static Method. The Static method differs from the other two in that the

spread of periods assigned to each priority is defined before the system starts executing and does not

change while the system is executing. Figure B.4 below illustrates the Static Method. The static method is

clearly the most efficient, both in its memory requirements and its execution speed. The tradeoff, of course,

is dealing with widely varying task sets with widely varying periods.

"To determine which method is best, an analysis of the results of each method will have to be made.

It is important to remember that the problem these methods are designed to handle is more tasks than

priorities. The initial guess is that given some random task set, the static method has the least distribution

of the tasks over the available priorities while the linear method has the best

I
Hiahheu Lowest

Priority

Figure B.4 Periodic Priorities Using Static Method

B4

B.2. Evaluation of Priority Assignment Methods

Perhaps the area of greatest misdirected effort was in the thought and development of the differing

methods to assign periodic priorities. The assumption was that assigning priorities to insure that the rate

monotonic theory held would be difficult when the number of tasks, exceeded the number of priorities.

Complicating the issue was the belief the unknown spread of periods might make it difficult to spread tasks

effectively over the available periods. This is indeed a problem if the periods for each priority are assigned

statically, but as was discovered, can be simply done dynamically.

Before the discussion of the results of testing the various methods, a note about the graphs included

in this section is necessary. First, there are two types of graphs included. The first type shows the period of

a task versus its assigned priority. The second graph types shows the number of tasks assigned to each

priority. In addition, there are four graphs for each priority assignment method; static, linear, normal

distribution, and a new method developed during this testing. One set of two of the graphs for each method

reflects the condition when both the mandatory part and the optional part of all the periodic tasks has been

scheduled (i.e. a non-overloaded condition). The other set of two reflects the condition when only the

mandatory part of some periodic tasks are scheduled (i.e. an overload condition). Graphs showing the

middle condition, where some tasks are scheduled to execute both their mandatory and optional parts, and

some only are scheduled to execute their mandatory parts, are not included because the priority assignments

are identical to that of the all optional condition. The difference lies in the execution mode assigned each

task, not the priorities.

As mentioned above, results show a lot of unnecessary effort was put into this area. The belief that a

serious problem may develop if priority bins are defined statically is, however, well founded. Figure 6.2

thru Figure 6.5 clearly show the problem. Because, the size of each priority bin has been defined statically,

it obviously does not handle a dynamic set of tasks well. Note that in both Figure 6.3 and Figure 6.5 only a

small number of the available priorities are used. This can potentially lead to a significant problem when

using rate monotonic theory, essentially lowering the utilization levels needed to insure the tasks will

complete by their deadlines [Sha, 19891.

There are some factors that can be used to improve upon the static method. First, for this thesis,

periods are generated using a random number generator. In any "real" application, periods would be

assigned based upon some definable criteria. It is clearly possible to better match the static priorities to the

B-5

particular system. Note, however, that at any instant in time, it is still possible to have a very uneven

distribution of tasks to priorities. I would suggest abandoning static priority assignments altogether for any

continuation of the work in this thesis.

Figure B.9 thnu Figure B.16 show a sample of the test results of the Linear and Normal Distribution

methods developed. In Figure B.9, Figure B.11, Figure B.13, and Figure B.15, the slope of the line shows

that indeed priorities are being assigned correctly (i.e. rate monotonically). However, Figure B. 10, Figure

B.12, Figure B.14, and Figure B.16 show that the distribution of tasks to priorities, although much better

than the static method, is very uneven. The results of these distribution methods on run time performance

can not be accurately ascertained with the current implementation, but from the prospective of effective

utilization of available priorities, this approach is unacceptable.

Analysis of the graphs in Figure B.9 thru Figure B. 16 lead to the development of a much simpler

priority assignment method. The "new" method simply takes the number of tasks and divides by the

number of priorities. The integer result of that division is then used to assign that number of tasks to each

bin. Any remaining tasks are assigned the lowest periodic priority. This approach eliminated the need to

maintain an array that held the allowable values for each priority given the current task set. In addition, the

calculation of that array was eliminated. Thus, the "new' method is simpler, more time efficient and more

space efficient. The results from a run using the new method are shown in Figure B. 17 thru Figure B.20.

Note that there is problem still in the implementation when an overload condition occurs as shown

by the spread of priorities in Figure B.20. The problem stems fi.,m using the fact that the routine to assign

the priorities uses the total number of periodic tasks currently in the system, instead of the number of

periodic tasks in the queue it is passed to assign priorities to. The fix is relatively simple and will be

implemented in future versions.

B-6

90-
85- 1

80-

75-

70.

o 65-
CL6 0 L.+

55..

45-
40 1-1 111rI' 'I " ' ' '

0 1 2 3 4 5 6 7 8 9 10
Period (Seconds)

Figure B.5 Period vs. Priority, Static Method, All Optional

90

7011111

60

0

.50 1 1

10 I m

Priorities

Figure B.6 Tasks per Priority, Static Method, All Optional

B-7

•+

60- +
++

+4O -. -

,0 .

a. 30.

20-

10- -

0 1 2 3 4 5 6 7 8 9 10
Period (Seconds)

Figure B.7 Period vs. Priority, Static Method, Some Mandatory

120

0 o

20 1

Priorities

Figure B.8 Tasks per Priority, Static Method, Some Mandatory

B-8

90-85- - - - - - -

80- -:- *"-4-- -"-,-.

7 5- - - - .- - -8*

"Z ---- 7
- - -

L6601 , -44 1

55.--------H-.*

50. - - - -""-45-
40-4

45- -- - - -'- r- -lrr lTI- -rrr

0 1 2 3 4 5 6 7 8 9 10
Period (Seconds)

Figure B.9 Period vs. Priority, Linear Method, All Optional

14"

12

CL®8-

2-

0

Priorities

Figure B.I0 Tasks per Priority, Linear Method, All Optional

B-9

90-
"" I''-+I- a* ,..-

80-. -e• - - -.- -

70- - -

+60- -- -- + - -

0

20-
10- -

0 1 2 3 4 5 6 7 8 9 10

Period (Seconds)

Figure B. 11 Period vs. Priority, Linear Method, Some Mandatory

120-------------

100 -

80
0

60

0.40

I-I

0"

E -

Priorities

Figure B. 12 Tasks per Priority, Linear Method, Some Mandatory

B-10

90
85-

80-
-,75- 1'l -• .- ,

708 - -14

6
+ _

0 -

40-..

0 1 2 3 4 5 6 7 8 9 10
Period

Figure B.13 Period vs. Priority, Normal Distribution Method, All Optional

12-

10

"0 .
S6

I-

2

Priorities

Figure B.14 Tasks per Priority, Normal Distribution Method, All Optional

B-i1

8+
++++

7 +

60'- -5

0

30- - - -1 +-t I-+_a0.

20- -"--"- - -I +.-

1" 0-- -

10-

0 1 2 3 4 5 6 7 8 9 10
Period (Seconds)

Figure B.15 Period vs. Priority, Normal Distribution Method, Some Mandatory

120.

0 .
100

80

0

,- 60

Priorities

Figure B.16 Tasks per Priority, Normal Distribution Method, Some Mandatory

B-12

80 - "-+- - - - -

85. ÷+•-

70-

CL65- -+ -

55.1 11T- -r-----------------

Period (Seconds)

Figure B.17 Period vs. Priority, New Method, All Optional

6

5

4
0.

%a".

O-.

0

Priorities

Figure B.18 Tasks per Priority, New Method, All Optional

B-13

90. + . - .

70- --- - - - - + -

8.0-

70
&L40.

30.

20.

10.

0~ ~ ~ ~ ~ ~ ~4 - ---- V,= =,j = "I • |,=, ..)I, , . 1•... , A. , . I• ,

Period (Seconds)

Figure B.19 Period vs. Priority, New Method, Some Mandatory

90

I- 5

0

Priorities

Figure B.20 Tasks per Priority, New Method, Some Mandatory

B-14

Appendix C. IRTS Demonstration System User's Guide

This appendix explains how to compile and use the IRTS feasibility demonstration code. The first

section details the system requirements, recommended library structure, and compilation order. The second

section contains the source for the feasibility demonstration system. The source code is included for

reference only and is not intended to be "production quality code". Chapter 6 of this thesis has pointed out

a number of deficiencies and recommended the changing some of the data structures used. Any future

work should address these issues before continuing to use the demonstration code.

C.1 Sy'tem Requirements and Compilation Order

The IRTS demonstration system requires Verdix Ada 6.0 in order to compile. It uses the Verdix

supplied task management procedures Suspend-Task, Resume-Task, and SetPriority. To use these

features, it is necessary to link in the Verdix library V_XTasking. In addition, CLIPS/Ada is used as the

Reasoning Process and also must be compiled and linked to the users library. Also, the Booch component

files StorageManagerSequential, DequePriorityBalkingSequential_UnboundedManagedIterator,

and Monitor are required. Figure C.1 shows the recommend directory structure.

Ld Inoet Source Code

Figure C. 1 Recommended Directory Structure for IRTS Demonstration System

After creating a new Verdix Ada Library in the IRTS Source Code directory, modify the file

"ada.lib" to reflect the locations of CLIPS/Ada and the required Booch components. In addition, the

C-1

"vads-exec" library should be linked in. An example ada Jib file after these mod~ifications should look as

follows:

!ada library

ADAPATH= /usr/vads6 0/verdixlib /usr/vads6_0/standard /usr/vads6_0/vads-exec

ADAPATH= /homne/hawkeye3/mawhelan/Booch /home/hawkeye3/mawhelan/CLIPSAda

Note that the third line reflects user specific locations for the CLIPS/Ada source code and Booch

components. These locations should reflect the actual locations for the users directory stnicture.

To compile the IRTS demonstration system, first compile the CLIPS/Ada source code (refer to the

CLIPS/Ada manual) and the required Booch components. After those files have been successfully

compiled, the IRTS files should be compiled in the following order:

random.a. get-tcb.a

globaldatAjtypes-spec.a find~tcb.a

support-fuinctions.a, feasible.a

task-controljbufferspec.a pjtaks-.p~priorities.a

periodictswks_spec.a ptaks,...p-priorities.a

any-ýtnne-tasks-spec.a pp-jyjimportance.a.

singular_.tasks-spec.a, someperiodics-optional.a

task_manager-spec.a assignjperiodic-priorities.a

reasoning-prcess spec.a schedule.a.

io...process-spec.a un-schedule.a

task-control_bufferbody.a nonjxpriodic-cornpleted.a

periodic tasks-body.a modify.a

any-ýtime-tasks-body.a modified-feasible.a.

singular-tasks.-body.a dispatch-tasks.a

task-managerý.body.a printjxriodic-tasks.a

userfun-body.a. print-non-periodicjtasks.a

reasoning4,rocessjbody.a prin~test~times.a

io-process-body.a record-tirnes.a

task-nmanager.a

The IRTS demonstration system makes use of a file called "test-Tp-mles.clp". The file contains the

CLIPS/Ada rules that drive the Reasoning Process. In addition to all the Functions available in CLIPS/Ada,

C-2

a number of additional functions used to communicate with the Task Manager are available. The Task

Manager functions are as follows (all times are given as a real number of seconds from midnight):

(addtask <display flag> <task type> <procedure id> <period> <deadline>

<starttime> <importance>) The display flag is a boolean value that instructs

the task to print out its start and stop times while executing. task type is either any-time,

periodic, or singular. procedure id is the identifier of the procedure within the task type package

that this task shell is to use. period is the value to be used as the period. The use of the deadline

value depends on the task type. If the task type is periodic, then the deadline is the stop time for

the periodic task; otherwise, the deadline is the time by which a task must provide an answer.

start time is the time when the task is eligible to start execution, importance is the task's global

relevance in relation to all other tasks. The procedure returns an integer value that represents the

task's id. It must be used to refer to the task whenever the modify or remove procedures are

used.

" (modifybtask <display flag> <period> <deadline> <starttime> <importance> <task id>)

The parameters should reflect the new values desired. The old values should be used for those

parameters that are not to be changed.

" (removetask <task id>) This procedure simply removes the specified task from the currently

active set.

* (new_periodicutilization <value>) value is the new amount of processor utilization to allot for

periodic tasks. It should range between 0.0 and 1.0.

In addition to these procedures, the Task Manager also communicates with the Reasoning Process by

asserting facts into the CLIPS/Ada fact base. The Task Manager signals infeasible tasks, missed deadlines,

completed tasks, and its current status through facts. The facts asserted by the Task Manager have the

following forms:

• (infeasible task <task id>) This fact is asserted whenever a modify or add operation has tried

to assert an infeasible task as described in Chapter 5.

C-3

(misseddeadline <task id> <time>) This fact is asserted whenever a periodic task does not

complete its execution during its period or a non-periodic task fails to complete its execution by

its deadline, time is the time at which the missed deadline was detected.

(taskmanagerstatus <time> <PU> <MU> <OU> <RU> <periodic condition>

<#periodic tasks> <#non-periodic tasks>) time is the time at which

this status report was generated. PU is the current periodic utilization. MU is the utilization of

the mandatory parts of the current periodic task set. OU is the utilization of the optional parts of

the current periodic task set. RU is the utilization required given the current number of periodic

tasks and the current budgeted utilization, periodic condition is either SOMEMANDATORY,

SOMEOPTIONAL, or ALLOPTIONAL as described in Chapter 5. #periodic tasks and

#non-periodic tasks are the number of currently active tasks of each type. A status report is sent

after an Add-Task, Modify-Task, RemoveTask, or ChangePeriodicUtilization entry is

called.

C.2 Source Code

The source code developed for this research effort follows. The purpose of its inclusion is to allow

future researchers to see a concrete example of how the architecture outlined in this thesis has been

implemented. No attempt has been made to make the code robust or tuned for optimal performance and no

such claims are made. The source code should be used as a guide for any future research efforts and not as

a fully developed Intelligent Real-Time System.

C4

* 0

* 0.

* .0

0 X2

* 0

* 00 0A

* 0 t0

0 4 e m.-4 N

~ 4 0-

03 0 00 0'

0~~0 40 am1 00'.

'0 4 0 0 ' '4'0

42~~~~ A040--I

r* 0 aH' 1 00 V.Nr.0
* ~ ~ ~ 0, Wu0' N lii. N.*0 m00- 0 0 0 0.42 ý 0 4j a

e 0. N - .2 N .0 0'.rNO
* ~ ~~~~ v0 0 -V2 2 00 . 2 .
* *N '0. 0 0 000 0'N 0 - 02442

.LA ~ ~ ~ ' .. 0 r-l14.' H S 0

I U~0l. 0 0 4 'I '2 4

400

40 '.4 N 000-H 00

4 4 42 0 42 .. '0 42 00H 0 . -.A0N

*ý 00 0. 0 0 0 00UH04-

0
00

to
0

m 0 h3

-. 0 B
00 1 . M

t. 0

00.4 H

Nc14 0 ' h

* 0.N0. O

0 0.0

04 4 0 r v 0
00 0'

.0.0' I5

.. • •"•

.4

----, -----

14 m :,,I - - -

* f ftgil 1.-H.440 ii

"o v, o fH iE - A

o~~~ ~ % , "o,,o,•• •,

•o 4

co mt ft I zi 14 I -a I

.>.:

.2 .t w , I Q-

I .0 oo -oo."

'e ..l I-. ,o o lI',h', -

m * t) I ; .0C I . .0 .

* I . I .i

o & s 4oo o., .

ft 4f ct I Iý i4O

ft ~ ~ ~ " 14 ft6 S0 ftm"i~9I il

.. H ,, H ..

ft H f ft fI I I• • . ''• " I II -1-

" .H i.. I

" "t H ft - 14 f i 14 I' ""

11 Ivc>ow

o ! o

•~~~ioa >ot.• • • ••
•~~o • o- o o "

n m m :

* .
D - H

* * 1 - . t ii 1 4 I H I i i i IC I"I
ft f t .141 .1 1 1

o W6 v

ft~~~ . 14 H o04 C t i 1

vt at -i to)d u fti IC-i mC- 4 1

ft ~o Ct I4 I In t O l
1

C I 0 0 I w-

ft ~"ft.C4

C6 Qa

C-6.

-0 C

0.0 -.0 1 .omI
0 1 14 N 2 *. 10

III, of C 0....0

-- 0.- . 0 C 42ý 0 -- *I x
0 0 0 0 8:4> 0 .4 %4 we. .I or0 -.-Al0; ý.4 0 0. 00 .400 w O N2-- --u 0 AII Al- 4

4.10 0 I 0 0 0 0.0 1I.

04 0 c cI-
a- 0 u 4. c J 0 0 c41O

0 A H.
U,1 m1 0 .00 to, re-11. 4m ICC XN H H 4I 0

4.11 1- 0 i o -I m0. 0 H-l~-4.In 1 0 H I C I--

0 0 000 4 . C1 0 I H3.00 0 1 00 0 4 .
U- 0 . r m1 1. 0 0 I-ý 0 w>)SN .42 HC

.0 0 . 0 0 5 -g .0a > ~100 H H
01 t1- I. w 0 00 0 I H. H 0 H 0 H

.0 1. H:INj 0ý r' > P000 I.O n 1- 1, 1 0001 0 0.1.0 . I, S I.00 I-4 Ed . 0 0 02 Ham

00 1- Cý E,-'' OON 0. D 2 I. 14 100 H 0% II- 00
42 ~ A1.. -- >0 4 H 0 HO .141 I 1>4 42HHH10 ~ ~ ~ ~ 0 > !H0 414 U 0 O O 0 I 0 H

Z I -- IO' 100 -I .4 0' 0 H 14 1-120042 010 0 4 10 a. 0 HA 0

000 1 0- 0 1 a2 0l H 10122 .C4. I.4
0.4 11ow40 X 0 .. H 0. IO 0

4 . 01

0 01 0 H 0.HI' - . -- I H 13 I I
lo..42 . I E-I 1 N 0 O > 0

-aI r H O 4 0 14 01 0

.0 V. 0 02 'Ca H H 0 OH '
CO 0 r- Hr. .- . H IN > -I 0 >

CI I 1020 H moo 0.V 0.. "0HI

O0. H N 0. 00 10 0 INVNI 0
H.8 0 0 0 ;N H 0 41 '0 CO

I ~ ~ -H .. -.4 H :p I 1
'0 I HO 1 0 HO 0 01 V00 co0

C r. 1 IN0 C Hl N C I 10 CC

-00

o. t, 0

"00 00. CC 0M0M-

.9 >1 010 00 . g.

OOA0V .0 0 -ma 00 14
g o42 0

G-1 61I.
ý0. -0 ' 00 -.r 0.,o. 01 c a r - 0 v421, j ! Z

09 -.-' . 14
0 -0 '0 .0

O3 :5 000 ýv 1-1 09 1 0 0. 0

ac kl- '0 Q 0, 45. o .r. A 42 all. 'o 10 me. 0 .0
N~~ I- 00o0N~-

0~o 30 00 0C0V 40 > 0 4I-A A.. 0 524.-- I I 1 0 0-- 1 42ý X'0300 'a .-. 4. 420 00 1402 06 U2 42C 0 >
0. 0 m 1..1..

0. NN.0 042 >I > 1Z
a 1 I.'0 14." 'm '0r 0 >10 01 >.

10 0 .0.
ECCO H0.,-0Q '0 COI N01 IV o "0 o2 o, 0 C 040

00 .00 01V4 ""

0r0. -. 40000C 4 042a400

0 0 m LC .0 .444 .0>4 4 r 14 I 42 0 14- : 00
r: 0 0jq CC.- 0o 00 11I0 '0 0 I 1400I I6z M. 0 ' 0 A t -4

0 04l. 00- .0 O .OO N N-- 2 0 CI 14.1~~~~~~~~~ A -'01 -4- -0 1. 4 0 g
3

0 0 6 .

00v - -.. 00- HCC 0. 0- 0 5 00. '12 0 1 2 1

.0 014 4041.0.140 : 10.1 ~ I~ 0 C> C 0-4 A0 0 08

0 -. 41.00 000000--I-I 142 -g. . .- 7 -> ~ 0 0 0 0- 2 -

..

* ---------------

* ~~ A4 IA40 04
*~~~f A4 A4I 1 0 .> I I

* 4 4I . C' S I o
* ~ ~~ ftf 0 0 6 I N Ir0.....44Nz'r 0.~

* M * I o O w W 4 IV0

*~~~' 0 0 41

Iý 0 10 a

o 0 .4 1 0 '

s ..: c m I o 4-
40 I x w3 m4 I "I IQ

m 4 84 0. 1'4 .0 .4 0 I 1 I 3 Q I U IF-m
E* 0 E4 MNI 2 A' M I. J.. 10 0o ! n. I M

.4~ ~~~~ w4 0.c o .C Qx1 4 4w I

. .. .4 4. .C . - 0- - -. I I. 0 I 0 0

... I.. .0 0 0 I I I. > I I-

.4~~~r .~ .4 m.. 0 .- -I4 . 0 0 44 I 1 -

u r -. .. 0 . 14 4 0 0 . I

1.3~~~ ~~ o. 02 V .,r-040'.04 0 0 0 I

*~ ~~~ ~~~ ~~~~~ .4 .4 .4 .. 4 . 4 A 4 .0041..
* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o -Go.I 14 0 ' 4 00 a - O a I 1 C I 1

.4 ~ ~ ~ ~ ~ ~ ~ L I 4. 04jC.4 .l.-00 - 0 0 6 14
.4 .U0040>U41.40> ' 11110 0 1111

* -,1 - 0 -o

o. I6

.4 .4 14 I"4 C a

0 1. .- to 00 _

AA >, 0

w4 . "m I I I-i .. 441 4Ed0

.o .4 r4 I Ia I , c I oM'44
.o -4 I, I I o 0 -00 -M

.4 4 4 "o I I I I0 -'444 4 '. 0

.4 . .0, o. I .U.-.0 U 1 6

4 r Z 0 444041

14 .0000 A a. Z

.. V 0 0 . . 4
0 >4 r

* II 4 I0 0446440C-8CC I

A. I

5,0 1 4- .4 I34a N 4. .1 .
00 0M m I -II

.0.0 04 r.I-

IU M0 . 40

I 4 I .443 0 14.

L) 44 0 it 0 w.C v443 A
A.0 v 104. .0- I I

4 0 '2020 .m >I 4-.4 2 .2 4
-A Md 34 0. 0 ~ 4

1441.4 M4 40 0 m I IS0

4>.34. W, 4441 44D w4

4.0. CC -me- 440044 00 .. I I 4 .
39.4.0 0d I u I w 0 u .

44440444 .M 4 -2 00 0

40.0.4440 00 3
4 ~~~ 4. 4 4 54 4

40 00 0 . -4 40 .4 0 4p . 0

44~~ 0 010 4 0 -4 4 4 3
11 .0 0. 4. 'a 443 V- 4 4

0~ 4 04 4 40 I 0 44.4 -0
44 I 41 044 k r a>.43 4 > :

4-44 000 44 4>2 I 00 r. 4 0a.

0~~~~~~~~~ 4014mI00 4 4 4.444
4.4MMO M r. 44 4 0 0 4 0

0 0044 0 0 0 a4 I 0 .
0 4C000..4 - 440 0 .0 3 0 4 0 0

t. 0 fx4 0.4 .. . 4. -43
V . O0 vv 4 0 4 4 0 4

m 4 > .- 0 4 '.
44 M ý 44 4 40 0 0 220.

40 44 0 4 44 M.4 4 40 NO 3
U ý 40 144 40 10

4444 M.. 44X 4 > 3
'8 ' Is4

0.. X.0. V1 0 >2 10 w w 0
0 0 00 00 4 4v44.

.'m0 -0 0004 4 '0 04 . .10 0 0 r
4-. 4..O -ý 00. 1 0~0

Q0 0' 'a 41 .0 4u 40 '0 4

0

0~' '0 '0I 2>-
0.0 0 0

500 .

044 0 6 3 :5 '0'0 000
O r 11 t- - 0- 0 '0 00 > ON 34

.404. 44 0. .0~ 0 0 0 j 0 ,0
.0 1'.0'a0 004 0r4 001 Im 4 .-

'04.03 00.00 Eý 00 0 -. M.4 a4
"Io 0s 0

4-. 00 m..- 00 0444 -
00 00

M I", I4.. - 0..0-.. on .. 34 44448 a 00. 00
C.3 02- 0 0.0 a 00 -9. 044

0.1 ro r ~ 0 4"4. 00 011 0. Il. m.'0 U0 oovl
>34.-- 44 . 44'0 0 4 0- I

10 '00 0 0 0 000 4

'.u i 02W4. 001 404 -00 .4 0c >00 440 '0 aI
IQ'0.. 4..4. . 0 ?Oa

0
- . a, 0 44 I.

IV 0000 -. 0. 44 00 cc -. 04 0 4 4 3

.0: 44 440 v 3- 034 0344 r 0
a 00 0 440w 04 >4 04434 I0 r- -0 4 4

.404 00ý m 03 34 04 5 04 3 . 0 0I. m 4
0. 344 01 '0. 0 04'000 023 0 00..0 4 4

0a- mo '004 34 p444 .4 0 0 0 0 0.'04
O 4.0 0 000.-S ý C4 A'04403-4 R40 100 0 0.

I- 444 4.00 14 00 0 0 1-- 004

o-3 0 0 0 0, 0

In4M a 000 30-4. 44 40-4 4 4. 0 . I 04 3>4.04>44 4340..4.0

0 I 0

0 34. .00 024 0 44 0 > 00 04.4 '02

~.0 '4.4.44 09

I III Imo 9 -C, O. 0000.- ' 0--m oO o II

* 4. ,C C ,,-4 U I

~- -A -A -A 0A -A -AAA-AAAAAAAAAAAAA I

.:,
.:o . E ,

044 0 94 0 0

I 2:ACo-49,.- 4,•~~I r .. :.8 r .. ,CC 0.
H:I 914. 0 A

0 t

I•:l n Im l -#A W

0-

A I 11 994 U4 ,.4 I1 0 >.4 : A4 4 0 40 1

.; M. .. N.4 4 * 0 4- - * I 4. U I I ... I.oo 4.-40

S........ 0 1
.0 A 4D 4311 431". " 1 1 - C v

0. U l H a. 1] . 1 1

.d 0

* 4 - U . U 449 C 39413 0 09

t~i 0=,c- IMroI'sa 'MOk

*ý 44 0 09 Or EM43 o*W4q 0. 419 a9 -' 0

*,43 94 I49 MUZ VMZ * ,0 I ICe 0 0 9 .90 00141 .94 91 , 0 I 0 M 0 a

*~~~~~1 0144111 1 43 010.19 4

. 4 3 0I.

111111111119 1."• U, i,
C-IO

a 0 0

0U 4 I

0 -00 Z0 a-

0 44 0 0 00

0 0 4. -44 0 1M"0
H.-a ala --- ' .4 I

A I U 0* I-

ce19 1 9 000 c4C 0 0 >a
0 0"9 9 9 9 9 .94 0 0 4 3 . 1

I I -A I I III C04 MU I'"C
c 9 M 90 0 .00 400 >4 - CO 3

1 -. I aS.9. 94 1 0 -. 0

0.~i It 90 I. I 2. u -- 0.C ' C 0 3 3 -4
I - 0 . Ia 9 9 0 C C C 4 0 .

*M 3ru 9 9 I I4 I 1t~ c -i ý o

9 I C 2 I I4 9. .034 94 a C0 '-

0 v ~ V-- ~ I 0 ~ B - 4 0 0 1

10 900944 9 0 I I4.

&E-4
r 0. A

-E4 I-4 A-
A. I

10,

440 41 0 '.H14001
0r t- oF I uF IIIa
-1 co. (o k. ii 01I

H 4M iC F. I IFU ~ ~~~~~ U0 I 41' 0-

I. 444 w H cC I . "

4>F. t-- . CU m4 I 44 C
'HO ~ ~ 9 ' I 44 FCC U I I 44(00 I 400

4 W Q 4 Iw r0 04 0 A m-o I C F

-01 v 4(((0 0W 40, 1 2 1 1 1 M-

U'0 U 0 (I >- C - I 0 I

4.4 00 14444 -

00 l0. a 0 rC 140 - I 4 I

a, V 0 40 04 I 0r>. 4 I > I I

0044 I IC 1 143 04 I 44 wFF 4 I 0 4

05-. 44 44 1w4 I 0

C- 0. I 40 M -

I 00. 1.00C .

F. Q 0 C 01 v 0) IFFF14cF 44.'' &0 'HH ~ 4 H

0.0 0 0 C0>I - C'n I 0) -1 *H 'H I 06
0 I14 H >0 I 40 (4 *H 44 4 0. I Im 440 .0 I 0

00 -H0 0 . I IC 0 0 0.1 I 444 w -Hc1 4

044~ F.0 I - 04 440 440 x' 0 4 4 C 4 4 4
'01 XO0 4 0 4 4 4 U 4 1(q 0 1

t1 14 10-H 40. 1 . 00 O I I ' H .

00 '4 0. 0.0 IC 4 2' P ' 444 0. 00M 0 4 m0 0 0 5 4 0 a 40 CI
00 X

A. -H e- *- :8- a' >
00 0 40 00 0 k 40 0' '0 x 0a'

C0 >414 0 C 4 4 4 0 C III0
0~~~ ~ 4444,. .4 0 0 440 .4 0 444 5(

0 '0

"0- I 0 0 0.U0"

1 1 0ýu00 .0 q 0 0 -1F. -

u a0.

r040 > -0-0 0 01 4 4 (
U C 44 0 I3 1 A-0 0

0 In -H 14 440 0 C 0. A4 a UI00ý 0 0 C- - >044
4-4 0 0 HH0444

441 00 0-HM Cm F..a 0 04 0 -

4 F C >> 0-HO. COO .1' 0C O- 0 M 0 4 1 4

E.0 I I I.44 1.0 00 '4 444 '0 U H I 00 4

a '40 E'F 0~ 0) >l 4 10'HI 4
0U44MU-4 > 4 . . 0M 0

-H0.00C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - I-0 0'0 2 0 4 H U 00H

r4 S

00 Q,
00

00' .0

00..
f. 0

0.299
m

au~m .. a ~U 0 m 1
t.4 0

* 4 - 0 ->44444444444-144444404.44a00ak
ba la 4 0. -'. r4 a4

p I I i0 0

0 u 0 0 0a S

o .0 00 t0 w 0- t-0 4-
* 44 44 00 4 um0

*~ to ...4a..- a
* 44 4 W-0 0 04~- 01 1-00-. 0

F. 0 44 -v- 0 0 .0 '0 0
:3 44 a44 N 0 o444.0 0 -4 o444 v o. 0
lu '4 t. 0.4 .40 0 0

u 44 a':. *-4 00 0 - ,,E4

00 80-.-6 0 - 9m.-W a go-
In40).- v 4 0 o 14 -. 00000.. 40

w>,4-S MT40 c c4 a n in

0.1. .. 06 06 L. -ý1 .o . .
.0. LQ m4 0.14 v4 w4 I

In G.4 0 0. M.0.44 o- ; v U110

'a 0 : 2 ~ . 00 0 t.40 0c *0 44 44 4
u 0.4 0 -. .

V 0

* 0 0 0. 0 C-12 04 0O

1 41 0

0 I . I0 w :3 x

I : l3 v I IC A S6
'a I0 r 0 I IC I. 0 l-4 m

II I r .04I 4 C 4 6Sa . 1 4 6 1 ; .- M- 0101
44- 0. 0. .
444~~ ~ I u'.'444 I I=A4 tr(

IC I4 W6 41 n 44 44 64

I~ I- -m C u6~- 10 f. 0 CI.. 0cal.. C
.. ... '. .. C 114--0

I0 I , IC 440 044 0 16 44- 4 C4.C 44 4.4 CNI 0I I~
III I 0 C 44 44Z I I- 0AD ~ I 04-644 *.P I q ce.-4 - i

44 44 6 4 4 44 4 6 44C4D 4)4044 04 16 -. - 11 . 44 C - -.4 1 -.46 - -4 4 --

44 ~ ~ ~ ~ n COB9 r4 0 4 64 4 . 4 61-40 0 4 40 404co- 40 0446

r IC V 0,400 tp 01 . 1 1~ 044 C4 4 O .. 0144 C C C 4

6 .wE

.... 0.0HO...4-....0 . 0 64.-C 44 0 4 46 0 - .. 4(

C 4 40.HC 44444C 6 4 4 I 116 4 4 4444444C444C ~44 44 444444sea4

H ~ ~ ~ ~ ~~~~~~ ~~~~~~~~ 40 44 004 4 V 0044 4 42.466H 4 6 (466 6-

O ~~~ 4m3emo0CC V 440n 4 4 U-4 40~6 4 444 *444 4~

0. 4 46 44 46444 - 4 4 0-H 4 6 444U 44040 4(0 44444444 44-

If. 4 0 6 64 640 4 4 4440 4 4. C 44 CO-4 4 4 4 O4cCC C

0.4444 4 44 4644-O 6 Q 1 46- UH4 60 4C444

4406~ ~ ~ ~~~~~~~~~~ 4 IC 6 4 406 c-444 44 4 41.0 6
44044 4 0 0 01 C 446C 4 4 4- C4 4 44

C4444. 4 4-H 44 -4 C 40 664V 44 OA OO 40 04r

""04 v44 C C ''''0. IC C0

4 53 1 ow
c 0 r "-C -1444 C" 4u m 4-O

I O4 I4 4m 4 c M - 0 0o

0 4(01 'H

Co m I I I CC

OW OW 4

M~~ 4 3.

O 4 66C-134

-I

o VC
mI I

0 000.
fm 41, l. 4-

I0 'a 0 4

0 V4- 'a 0

00
'UV 0.

0 1 V44

C ol. O r44
1004 I0 V I00 X

C C 0 z I0 3 4 ..
M S! 0 -X 1

1~~' 0 r L
'if

X 9 2 w - - 0 ": 5 - o Uu~~. m 50X 4

""11 A.. .1 451-, M " , 0
. 0 10 0t I . 4 44 1. 0

oC w I 0 0II 62

0 .. Cm .c I- C
3-0C I 1. V -. I

. 4D IC ! ,a.0
S 0

IS II IS cC 0 0I 9: 1 wocS.C ".c 1. 10. U "o.CO C. 1 20C4.C- I I -I -- ! I - li 41Qmc

4.C. .0 I I 4 ~ . . 40 u4 I44

04 IC S I 0 COv ON aC4 0 aI ' 0 .m4 I

r I C 0 . - 4I I
3.4CC) 04. S§ so*.

S~ I 09 A..4 0440 00 *4 44 5CwC- S. I I
.4 I c IC0. 44 .4 4. . 8 ~ C ~ * C 4

IC.1-I"4 0 4 .- 0. 40 0 0 SI0 -4
IS~ ~~~~~ r 4) 0 . I .OI-O 0 4 3 0.44 C '0 c I

.. Z41.44.4..~~~~~~~U IV S 0 . 5 I 45 44I.4 Iu CI .
ICICC U ~ 0 IC044.0 I 3 . 5 C U.- I 5 Ire

'0.45.50 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~C 14I44I 4 .C.. .4 4 4. ~. I44 I

IV Is

6c
'a0 AgO

0.~9 u >>
A 0 >

4* ai. - j 0-uZ
8 00.0

C a co 1 0u
* 80m 4 .. I 0 . ,0

0 w4 -4m0rv
ý'w r kA Z Z 04 1%a 0 ->0

1 0 m I* V 1

A it 0u 00
me 1 - U 00 '.0 100 I.U (a q"00 0c0 0 0. -4 0f 112.

00- 003 -.- .>0..00..0...

0 C40 415 '0Z

*~ ~ 4 0 9

* 00 0 0

09 0 1

o II

oM -u 9

U .0 9 5 .04 -

r* 0 9 94G 4 CI .'.

m -. 9 0 I 0tpSI 0 D 0 a
.C d D9 I. 04 0 w 0'1

03 0 04 .

00 Om 0it. 04. 01.0. 00
90. 0- Ct .4 U I . 9N 0 4 -

193 0.o 0- r A4 GA0 c 0.3 4-9 U
C 0 4099 41 .4 0 41 . " N 400

u N % 0-93 9 - 0 0 9 1 C r5 SOC 0-9 C6 'a9
U 's .44-9 *0 0'o(.Cc 60 I .04 wOA -N C3 ONcc 0e

0 060 10N 01 -- O C 3 (.. ' .

L 110 00 .w 0.04 C t- 01- Ol eN 3.U
6 6 4 14 N C '0 N -40C.990'9 rI C 0(.0 0- -9 I .) 1060-93 0

(4 40 '-9 C IA SA I 6' -. 939C03-
* 0 60 6400 0931 hM 0 99-C -090 -90014 499

9- 4 0 U . 0 > *-9 9 9 NO U4 c4 6 m - N .9 6 0 ' C 1 1 3 3 -)

. .O 01 6 -90 C.9 .' . .94(4N .-
6C

.-
4 c X93400-- 49(60 0 04 963 6 9-C9 493

U
14

40- 1 ~D4D 0 0 0 0 v

*~1 0 0 1- 4 4
*~~ 4ý 4 11AAC. 39

. 934393939343 (
11991 999 I--4-4----4----4

9 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -- I I U" I9II(((((3 0

""p0

N0 Cc-943o39 000

60"VO0006
* 4 9 -9'..'O .- 0000 94

* 0 4 4 4 C -4 m'6C

-N.6 o..9.o..-a:0
*0 946666C

4p 0 * 0C

* ~ ~ ~ ~ I 0.4*CCC -0

*~.. A 4r80 oio. U1
*~~ 0 4 4- -043 -- 9--C.

*.0. I. 0. r. 4e 0e or
1 11 g 90e 0o

4 ~ ~ M 0ý 40 ',4' 66 6 . >9 I9

4~~~~~. ----N4--AC 9--~-4~--

(40 c 40 - (
(4. -(. - 0 0 -. 0. I 0

00u 4 tr 0'4 0 -- M (4 InM U4 4 (4 0 0
14 404o, (400 1- aH .- M4(a4. -II0~0*4 I I~ 0(0

M4 M4 0. M(M(04L .H I'(4
0. 0' 0... F-. M44 4D E Z4. mom 2 M 4 (~ O-4.~ 4~~0 F. -F- H (4 04 W(E44 9'. o. .. i 0 0Q0- (~ 0

M~ aH H. 0D Q C4- C- 0 40 0
F. '. 0 . -0' 0s - 0. 1 s Q Q 1 - 0 .

0 0 0'I I H - H - _C.c . ~ 0 0
* . .4 0 0 *.. .4 I- . 0 .0. -H . -- . . F.

UH Iw. Is'l O 4 4 . 4H4 4 . 0 (0 4 M H 0 0 (H4H 1 0s E

o~~ .s W5 EO 00 0 4. 0-.0 .0 10 F- 0... c 01- 0 o0a0 um
4'.ýI 04.0 . M4. 5.4. H H (.4. 4 4 .(. .H 0' M' 00 c50. 04=. H w

(4 4.4 . .0(4 -((XI E4 F- V M(F (1(. F. F 0 0 14-(0(4 0 (4 (4- W 0(F (M (0 X.

' ~ ~ ~ ~ ~ ~~ - 1(.a, E40M(4' ' _ m
V. M. I0 MI (4.0 .0 (4. .(&. F-o- (4 .0 0.0M

rI 0 t' i' (4 .0.0- 0(40 (4 (4(

w 4 w W 0 0 0(4 (gý4 .0 F-. (4 144 . (-v- (4 (4H " . .0 0. (4 (4 0' (4..

r-H04Hr0VA H H0r clH0(H I r0-H0 r4((4 r0H O(((4((4 EH-(C-o Il ý -_C 0

W4.&4. H1 (44V at,(-4 HO II-. -. H atwa 0 w4I 0 W AD I Q 1.0 a) I we V 4- 0 -H (Z 0 (4 (44. I I I (0

I . (4mo I,-.- -o A (4 4FH - - o oo (4E o o. Q 0. os .H o o, 10000(0 Q'' 0 .0 IE. -H'0 0' 0 0 -.-0 1. -H M''''F00 0 (D --- (1.
(4(4 (4! (4440(((4(.-HF('v((44 'I Id (4 H(44O(1(4(.. 0 4!O (

0IoI MI 1441 MI 0(4. o114((4- 111D1 0~o o (44- E
HH ~ ~ OE PH EHl(H HH (4 (40- EHHH. (44 (4 0-H 4H H H (4 .0 0-OIH H

I - ooo(u... 0 Cooov o 0 H. . . u- M. 0 H. . .o o

44,> 04> 04> 044 4.. (4. 4.44.44. (4440 04 .. , 4, 4 (((- 4.44. 4

HH H H H. H Z H(0 (H H S H ((-H 4. (HHH H S H 4(.0(H H

0 0 0

MH =1 ?. 04

.0 H HoHF,(
u' o-o -Ed 0 6. 0 (40 0 0u

0 -0'-. M4. H M (400M
r.4-.. M. M >0U' -H Q

(40 0(4 (4 0 .04- (4 A. M0 '0 -. 0 A'

(4 H 340 (4M -. 0 F 0 (A 0- o g 00 F-0.. (4 0-

F 4' 0(I 44. 0 . IA (Ud 0 0 04 0 04- 1 (0 (
(-40ZP 0. 0>0 01(I V HO((4.oH. 0. u 0 HOQ (4 14
-H- w. wFoo. 0 -4 O((-S4- (w- 0

(4 'g,- 0u s5. HOf.4 . . 4. (H .0
4-. (4M 0 Z 40 0(H 0 0 (4 M4. 0. H0 41(4~1 1 (4 0 H I 0A 0 0 0 0 00 --ý (4S 0 0- M

V ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 (40. 0 F. (14 01 I F.H4H. 4 (0-0M 4(44 (0'(0 II 40 (4(4. (5. H H F- r 00 _ 4.. .. 40 (4C (4 H. 0.Azl (40 0 H.. H F 0 c10' IM(0 V4 1 4 (4 4 - H. 4. 4 1 4 -
HC I H o0 C r(0 (4 0 U4 (40 0000

(4g "X 0 c- (4. 00,. (0 0 1 4 1 (o .(4 4..

I .A 0 -H 0' A(4-1H(4 0 0 0 loH4 H 4 H -4 5 H F H 4 . o4 000 -15(. H

(4 HA (4 (4 4440 H 44 H H(H4 .0 M -H I A' 00 0- 4> z 1 0 M.. I. A I A0 H H ý)4H..H..H4H0'~~~ 00 44 4.41(4 H W 04 0 A4. 0 (4-0.0- 00040H4 4HO 100.0.

M (41 M A A<I(

H -. 4- I.4 4H H IH (4 1 F-. 0. .00.504.Z-0 z0 40m (4 F H H HH H

-H 44o (4 4 4 4 4 0 (4 H (4 o4 o IF I I (4o4 00 00 44
41 0 H- - -0Dn0 (4 (4 F-. n. . 0 H.

4.4 -~~ ~ ..4 H))44.4 4(4. 4 -. 0 4 F.(.4)44 >>. >.. .0

- (H .0(4. 4 H HH ,5H(4 (4 H (0 00F.0(4 4.. (4HCH H1H

-- 4 . V
0 .44 94 4

m4 4. v4444

-. 0.8 0. O.0 44440

0 ,)o 0 04 00 4
.0 > 4 4--

- '0 Q 0 '400 044Q)4400
o 44 0-1 W 04-

0 . r 0
0a 4).040 04 4 0.0

4 440n.0 44. 441 MOW4444 w4- .44',

>' w4 0044 0440 O0.0

m4 * 0 0-4M 4 m .-44 440404
Z 0 -4440 0. 0. x.404 44444

1 10 Is 0 0 0404.44 40. 0. "-
44 -4 440' 00 .4.090 0 I0 0 104 OF.-4

0 0 C44a 0 44 .40 4) e4 4 0 0 '

.0 4444c 4W 40 444444 .0
r~404 -I >)I 04. m . C~ a I4 0

!:z> *44 0 In 0 i 0 404 ;.0-44A
0 .- 40.. .4-0 44 44' 44 0 c0. 10 V0 '-4 0

O ~ ~ ~ 1 44 01 4-444..- 04 0400 00 04 0 4 4 4 4 44

* 00 4w 00 >, A 00.' IV4 .044 0.
* 0 4 000000 00 00 4 0 -0 m 4 .~4 444ý r4448. 0 *

0 40 004 04 4 00.4 144 444 04.4 r -. 4 c . 0 0
44 3 0o W 0. 0 OU '04-4 0 04 44 - W. '044 - . 00 1Q44 44

* 44 4 .4 . ~0 0 0 l 044. 00440444. 44.4 4 44

0 5 44 44 I. l4 0e I I &00 u44 E.>- 404-44 - .4 440>
* ~1 '4 00 we cw .4 44044 4 44 4 4 44-444410.0 - 4 .4-

0.'44'44 4 4.00 440-- W 4 4 0 0 -' F-1 1 00 --. r 2_ _ 100. r O .

0 x 4) 44 4m 44.4 44 a, 4a44 P4 0 0 Q 0 1 0) 44 00 '044 -40 1144 0 4
0 I 0 0 0 4 - . 00 4.' XO 44 0.0

i4 44 v m0 0 0 44 44 I40 4444444 .4w444 04 'a.40

E. E4 44 4)0- .) > * 14 4 40 400 4 .4V00 '.-4 00444044 44W- W4W44
0~ ~~ ~ 0- m- : 4 0 044 0 0. 04 C 0 0- W4 0. a44 4 -0 . 4 X'0 I.00 0

* 4 '~Z 0 004 -40 0> .. 40 40 0 0 00 4 44 44 -'a 00. 0

. 4 . 1.40444 .~> .4 .. . X.0 004X . 4 1

.40 ~ ~ ~~~~~3 *.44g I 3z.-44) '0 0 0 Q 4 4 4 4 4 0 0 0

0 444u 4144040.0 - 04. 4 4 000 4>
v - 4 0 - .440..-404.44. 04 040 44.44 4 044 44

* .t44 0 4 .j'-4444 444) 4) 44 ~ .44
r - 4 4444--444>4>0 0 0 0 0 0

4~ X 40044.4000 0 4 4440 4

104

0 .0aý

40IV
1-' 0

0.0 .,
.44. 0-a

0-04 004

444 .4

14444 4418

a u
4- -.4 -;&Q . -

0 c4t 02 F.
no-) f ' F-

a. aw U 0-0
.4 0 0 -.4 0 4 1
> 1- *.- >- IM8oo .a Zi u

4' 4' Et%0 0 *. 0'i Al

V 142. 0 . 04.14 MI 0 0 FA0

0 .. 0 14 C V 43 r-
r e el 0 04J 40 ac 0 C 0 0 0 1) 1 4 >Fc..v .

10 -0 Z.4 0.-r Q£ .a a- 0 0 g
0. c '444 00,4 - 41 IZf A -40 .

0 0 0 0s 00 - -ý 0 I 0..-)E-.42
-1 ýU 0 . 1£0 0. . .

wo cw >0r4 > a 4, 0 IA-H0W,0'w' '
04 M'0. 0C40M 0 0 109 0, 'M IV,. I 9 a0 0 o0aE 0 0 a-).4 00 I o

ID F.C. 00- 0.'C0090- M -t i 1 0,4 0- I- 4

MC) 0.
0
1a .f Co, x.34 00' 4. -0 .4 0

a-. E 0'>4 -4" 0 0 00.84 u~ 4 9 1ý"0 M0 z400 4 V
44 00M 0 0 04 M-IC X .44 0M 4.2 0 omoe A.tICOZ 000>0

44 0£ 0' I t- ý42.M 0 44 0 0 0 0 0' LIC14
03 I N C)20 A>Z0 914~- - 00 r' 0 4

042 D0'0 04 0 502 4I: M C t'K.

-. W4 oIanx 0 0 44 oz n *p F.i ~ 0t - 4302420.a A
0 - C444 v-)- 0 441 0040 0 s00 0 I -. - r-A(-a,

42~~ c2 CIC I 4242 £4 0 HCHC t 0 . 0C 0 .0 .40 0 "o-. 44 42 C t0

0 £ r 4C -a 02 .- 400 v2 0
.0. 0 42 E-)) cc 00.80 ' 4' 0 4040

0 0440 .44-4-4 - 0 ... 4 0 - '2- I 4

C 044 0 c £ £ 4 0. 0.0 -£ - £4 0 C 440 r404 0
0 4 0> 4 0 1 4 I I 4. 0> -a 0 CD4I 0. 1f >

a "a

00

O.CA 02.a

Ia a 0-
03 4242 .. 40;

0 M 04 00 0

06 - 0 -0
4 40" 0p00 >

0R 00 04
0X 0

M A z I ~ I

I c. 04 1 C1

0~ 0.> 0 ££0 l
0~- 042 -0 C00 r-0 00 0-

0.0. 00 1.
24 0 2F 2 F4F -

0£ 0 M 432
-4VD -> M-00.0-40 V, 1 , z w0 2240 C3 .a 42 C 0041000.- V .. 00- 044 *ýa Ij 0 Ia, F- - C4 F422 0 4

00 H0 r X 44% . C- 001C9 34 0 .- 30 *O IC0 4 1442F. ----. 04.4--v , I V-.F. 1. 0' ,40 4 4 % 4 F. 0 ,.. h ~ 023 3 4

aC4444 Ctfl 0 A -. 0 0 4'4 -14 042 020 - .8o 4

44' A r42A.8AA AAI2A A A "I. 00 . . . i0 ~
0.- 004-4-4 042 A V V0 CO 1 It.C CNI4 0 0

440 gum 00 0 r) 0ý- 00 0 04CA toI>I0>4
M0> F.0000u 0 0 M) .4 F.). -- 04 I.441 1 . £ .N l tF-F -.F 0

.. 0-. 0.0. 00 42, " 2 42 U>I 00 r2C 10 IC Ii 0 .
0i 04 04 0 C Cý "a,04 U -2 I-4 I M8 1

0, C -. £ ' I I so- 0 > 0 . 0

ý"£42 0 .8

0g 42 C1 0.0 0 U t

ZI F.))) 4.4 0 04)4C>-19

i 0

0 0 0

o 0) I S.0 0

0 N a d.

0 01 0 .4 04 0;

00 AAA

S41 Q 4 04 N-0 U .g.5 2
' 0 0 00 M 0 0 0 A-I-

A Aw ~ -

.0 1- I. n00. IO04 0
-C 4A! 'm m a

00 .4 -V . - 0 00 I0 0 04-~0.0 A r3 Q'44-4 0 rH-I-I 0; .4 >1 A

00 r- I A 11 P. u
WI1' A. V0 A A A -O 0 IVM--a4z.. V' V-0 0S4 .

.4 0-0 r 0

.0 ,a 00. c' 0 w0 1 0>1 >
r N C r 8 N.

0 .4..

t, 0 *0. 0.1 -K " S. 2 024 IV, .0:'.'.g

cA 0 0'

u. .4 04 m 3 C
.0N C F'. c.

C~~ 0 w N.

I I3

00

C-20

I I . I 00
43~: gr00i

0 1 10

I4 1 0 I 0

44 w w - -
t. .op tel 00, *S 00

00

000 00 000 ,00 00 00 IU 0

:r0 00 0 u0 1 0 -.1 Ot-

0 x 0.

0 4 0 0 0 0.- ~
w 0x m4 aW 14 * 00 0 1 44 14 g

* 0 * 0 0 > 4 g, 01 I : 14 I >4 r 0 .i-

m 000 O.14 :OA 1.>.. v 0 OX~

0w 0 r Wm V31 a. II

u % to w. 1.1 46 .100. Ow * -'1A *N 0 I0 .0

* 4 0 0 ~ 4 0400--*-i10, 04 0-.4 3 00 00 0040 .1 WIW 0 I .. 1 0

4u'
1. 0.

...4 0- 0 o I
E.11 11 1 1 1 .10- 02 1 Ip.0t "U 0

* >, W . .- 8 00 m . Z

0 1 63.,F. 00 00 0. Mo4

............. .14-' 41 1

.......... 14. 0&.4

0. a, on .0 go "04004 00 0 0e

* o 0ý 4 L) 01ii Ul- lm00ul-i--

*v vc 00...

lop 0. . . .r- .0
0 ~ ~ ~ f 4 1 ~ >0-00 I 00

* V. IV. .41 0-- .*0141 I . i.ti

Vo 4 0 0-.1, h 'I I II ~ .I I 0.0.0.

4~0 0. 0 0
* 1 4. 0 a 1 0 .I I I I I 1.1.0 141411

4~~~~~ ~~ a to .4 .14.. . 1~.in-10000.

*~~~~~~ 000 0 > 40 0 00 0

04 014 141 1.-0 11
X a m . 10 * 'v I E l m0 0 0 41

-- m so0 0 004d1 0 0 40 00 I*0 00 I~-- a r a0~1
4 ~ ~ ~ > 14. I. l I*

- ~ ~ wo ml MO 11 4 1444 .1 0

4 II 0 ~ 04434343 1434 0 310

4 4 41 n ~ .40.04*.a 14 40000 00 0 .C0.21

I 1 0 0 0 V. 0

.0 l C; C;
AAA-Qý

me Ow a AAAAAAAAAN
0 0, 0" 121 !-ýw 111111111611 OSAAA4 ýnmm I I a

IN Q I MMMMUMMOU)
MIC

u 9: 0 u
ou w .0 E.

00 I E. E. I-. t. E. Cý 20,
l M 0 Il M Um 0

'M Z' "N u 1 0 A A AAANSOO
10 !AAKAAKAANN I AA A 0 10 AA 0 fýl 1 -.- A AN 9-0 to .0,0, tý o fý 0 1... 1 v 1 4'1 0 1 , N , I I I CIA A I

I" ' 11 MOMMSIM
C.Wwk 1 ýo .8 191: ': or -0 lr

r 49.9 M so Z. 0
ýo 9 LO) -3 -9 " 0 uOls l 'I U, -.0 .0,LA " l

M:cEý .00 1.1H 0 .8 ==E1

Mý 41- v a. . c 0 1 1.114 i
-A C C M 4PAýw U" U" -. A L) U LO) '. A : P A AAAOOý
L) c ISS

0 0 1 :AAAAAAAAA111
A A A MAAAAA A4 MAAAAA IV MAAAAA U, MAA A A A w 1jj1;j;4,,,AAA
N N 11 kM W., N N I I a M a a I 1 0 Eý P I N

E-
I o v c 3 r

0 ý01 0 .,'1 r* 10 x x wx 0
U)

0.
E. 00 4, M 9 41 l

r

U'l 00

.00 0 .0. .0.
WIV I IV 41, cliý 4 X N. u OM-mm.

E, *0, Eýl Wý- 'cl w04- :3 M 0CIM
0

>,I : 'M 0 0 0w 01 so M" '1 0
-A E-1 r

41 M 0 Oto v go 01 1 0oiý
t) 0

A, l-ý 0
9 r -ýw I >I v
l o

l NI 0v 1 0
0 .0 0 E. fý H
D, 0

I C, RT 1 710 0 -. " on.40 .0
v c r r 4 p Ir 10, 0 c
0 0 31 0 0 3. 0 939 0 - .. 0

01 -A 0, 0 'OC UO ON I 'a

r u 9:
M M 0 M me

10- 1-- z 2ý".Oc

0 1 0 0
X o l.0

UV 0.. l
14 0 l.0

"'1I- .-
Fý

N m 00. so. OM I u N r. 900 Iw wo
- l ý8 l 1 0 M- z 'a -
am - a 'i "I r M 0 ý cm

1110 Cý 'ýCý A, to 2-1 0 4 1
0 0 u !. UO

M 9 1 M I ";L

u b4i -. M .. M . M 41 -
M I M I M 1 0 u 10 co fo-.
'a o 0 V I

0 E. > 9 1 . .8 1 I .. 0 c Ia. oe"to '1 1&0, '1 c 0' 0 01
0 z E) Ou - zu-0 0 A;8'0 A -1. -IS A 0 1 g, I c

.0 .8vsý 0 .8M 0
0 .0 V I I & 0

c 00 "1', M M - AN Ul Co-
In >'ým C a c Ig - 10 A. . 11 liý UOV 0 0

.- a A 21 0 4HU. ýAAAAA "0M. -H 0 0 ý-ý &.0 . 1 0 N I I Eý MA A0 2A 1 El 0
'w0 1ý" I i t - c v0.0' 0' o ýOtIll. as

U.

80 0.. l o' I- 1 0 X- r
lot 'M ig 4 S, M 0 l% 121 So 01 .1D -11, Mo 1

0

04 M 0 1. 4D 0ý6r
M y

'I I v c Qýo0
UO 000 Muma 11 1 4 1 2 VV 0 crý>:1 00 4 . C) o I D-x P

1 "44lo lol 2. i u
u M>...>1:3 -x x OM-0 r Q 0A.. 0 go -10,0. 11 1 low 01 11 .90

u u .0 ON >' A
'0 :j 4. a- 0 0 r'O f'O El. U - . 0

0
r

u ý4` 01 <07 .0 M 1-20
r r0 0 r c00 1 WO -4 lipv, r.,I.l 0.8 0 102 2 OIN
14.3 c 'a I l list

VV C I. l o..'v 0, 0 1 2 OU00 0 go o I I m-ý 0 -Cu l '..AMMM.% l Q o to.
'i ru x 00*0 m
OM 0 0 0 so 0. x '0 'D 3.4 4 u 0 40

f-H 1ý 0 0 .J. M MO, M

10 11

C-22

* .0

-- 40 04 4 .

No C

Ac 0 0 - -* g)
00

m A
* 0 00 0 4

N~~i NO HOx. .
04 0 a4 c 0

CC -C NC D.C a

IDm I log I 40 I M 0 I I.r EI 03
I '4 I N I IO I N I a I I CI N

wM I .. I II I .. I Im I IM
10~ ~ ~~~~ I' 0 'II I I 0 I

10Q I"4 0III I 10 c to
I-Iz I 1 0I 1 4I I I oi g

10 I IN Ix0I I IN I- a I 0 c I 4
00 I I" ,4 SI 1 4 I -1'''-4 I IC I 114 % I INIIEI Ii I I I

10 I I I 4- 4 I I, u w I r0 UI 4 I

r E0 11 I 1 0I . 10 I1 14 14 1 I 8 I I D.II4

I I1 V IIX 414'C

C I'. 0

Z 0 I c 0 I 4 .2
r" 0. I: .0 1 I A. I 0 1 ' 4I D. 4 0 4 I i N

v0 I WE IA I I 44 1r 46 4A IC

I . .8 I 0 1 44 Ic I~ I0 09 I - 1I4 I~ 4 I I C14

I.C 0 I .4 N I I Os I 1 I '0 0 0 0 I.C -'I I 0 I
114 44 I 14 10 0 I -.4 4 .4 I 0 r 0 I 4 'N 0 I 0 1 4 N I 0 I 0
I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .0 C0 I 4 4 1 1 1 A 1 4 0 0 I 0 I 0 I 1

:~~~~~4 0
14

000 ~ 40:~:6
1 I09 444 014 H o IN 0 I 40 0 I 0

IM~ ~~~~ CO r IN C 0 .4 ' 9I 4 0 14 D
o0 14 I0010 4 44 0 10 I 4

40~~~~~0 0 Ir4 9 4 C~r ',

144CN1r v 44 CA4 m 144 CN.- I 444 CN .14 CNw 4CD
100 I V0 -- I. G0o 0 4 1 -. 48 -8 4 8 I 0.

C0 C ;3a V0 Cc -0, 0 C,0 c,1'1M1 4o
0 I0 4U11440-

1*. U. 3.0-0

" 1 2 2 0 - ' 00 0 -- 0.
0 i CD0 140a 40440 00 14 00 .0:0 m

000. 000, , ' - u" 04 " . l. ' 1, 1C 0 01
II I I O0kO -. 00 u - 0

k* c 0 0 041 Q -a00 0.0 0 C OCO..r -
03 0 0w 111 04444 0. 0 '-10

0ý 0l 0o 0'00 0000 0 0c 44's'

14 0 0 0001 0011 01 0 4040 04
*0 I I c NVN VSS' 0 O O

'000 NN6.N14 00 .0 0 N z

'00 0404 11m4 WOO COO 0001W 0
44C11 . 00 m Nm m HO 0 00 Ift Ior4N 0 06

904614 - 0 001 69N 9 0. . .
00100 4-4441 ''4 ,. a0'I81 r 4040 gg g 44 04'

33 a ~0 00 0144444 .,aN 00 0 10 0001 I

I ' " .4 C8 0 0 0 0 4 0 4 al6. 46 c
0
a .0 D u- 44 " - 044 I

NO s ' 1 44 44 11 0 4 0 4 0C ' " 00"0" I"l "1 .4 C4. 0
04 0 11 0 -4 00 le4 N4 004 0 --44 -8 II Io I0..4

44 014 - -- 0 0ý 1.. 444 .4 44I .A. M'0' '0 00 0
0 0 44 C 0 '0'0 oo 03 40 - .4 C

014 00 0 Il: 4 ;

'0 441 '0 0-4 *.A *o C & a
44~s of4 04 4 1 08 4 0

CO Iiz IS NWý. NW I. 1I NW N N 00.i, I i I4

0.04 MD 44 00 0 000 0 C44I21

.19.

00 4U 113-

"m c3.. I uo ao Al a
a, I I ok

I 40 M- 0o0 I4 1
;81 - Zo ao i4. E1)1 aý a m

o4 k0 EI I *A -o EE

11-a a- UL0" 2 . al 'a- 140 3 ll. waa I

O'%; . 61 1 0.4 v.. . 4-40.30I-1-1-2r i.-U-2c 0m 3 m'. 9ý I U'a 0El- lo I 49

4 1 E- I -I 003 > I 00 o 0 O I I 0 0 -~8
'0041 0Z m 3 c a ow 114 I t 0 I o I ~

o -- MA 000 0014
1 4-I8 9 0 3. 0 I u 'A ll-. -.a1- -1 -1 o4. - - o8 9 14 40 1

. 0 a4 . 0a1 -1 4 I IoI o - 1 0 0. 4 3 0 D . 2 ,. U I Y .0o M 1 4 r t00 -0G o .4 I Z %43 U 0, 0 -99 0 -9 a u.9 4 0.41 Ie i'1O§0Eh o 0.0 R U - E-1 NW. U1~ .O u:9j~ 000 09--003
10~- I Lill "o 9- 2 0a 0 0-04 14I4.109 .- I 4 1 . 000000 I 0 ..- 1-1- m4 a4 3. .I Ia 10 -.u

11~~~~~ 4J 4 , , j 0 ý a
-20001 1- - - - - - I 9 o 0l .30 1 03 a:1. 9 .3 1 -Iý" I.: 4

DIJUDDOS~~U I! 0.> 3-1D!Il Zw Lm 0 'a..00c00 .030 9 04 . 31-4 4 1 4 go
1---110 (am - 0-----~a -0... .1 3 1 . 1 1 1 0oI 11 .>1 It _c4I2 - 0 00 ' -4 4 10 9 9 9 . 40499999.3 0 02Q I 14 20a 0 4 a. . 0 2 340000 01 490N .0....0 c4I E, 0. 34, 000 22 10. 04--- - 09 01-1-141-1-1-.:~~~~~~~~~~ 000 3 3x 1M3 a333. o- 10I04 o r0000001 1- 33201I91000 10 I a;0..000D I r 0D 1 1 0 1 2-409

01 I 0 102.~~1--~ *-..119.. 1 3 02U4a00.

lo14-001 1-1 I3 0 3 I I 99 -I 00Z 09 c I 5 : 0.Iw k-lr a . 3 9 .. 111111-I 1144 9-.I .4 a. o 9

999 ~la aaO1 i 14 11 -1- 401 3 3 0 4 1
E~4.4JJ4 4040 3 0 .0.4 3 300o

o0 1.-330 .3 6. I. I1 m40. 0

14
M

Q- . k - 1
E. 40 41 -k 0 0 - o 0n*~86 .- 4 44 -400.x1 0 m4 L oQ o 9 .4ý' 14,IUo~ o -- 34 H1 N ~>

10 14 0o 9u -1 S. a. 14 0o

00 z 0 1 9.3 0 00 9 .019 Ho -M +4 o- o-Dk o0-I 14 04 3 3 3 0 0o~-4M .021 1 3 4H~~~ -4 10 0 94 3 3 3 -4 . 4 341 - 0 9.3 3 3 0MO 99 U 0 3 3 . 0 9 0 00A4 13 3 0
300 ~ ~ ~ ~ Q 9.0IV-I 3 3 0 90.- 0140)3 3 D

002 I o W1 ý 3j 1 4 .0 - Ou. + 3 H 3 H
t- 0202 -so. I 202 .440 '-, 003 3W 2s K 4 w1 9 v- v~ o X .) * o .1 e o1 o0I 3 000 111 S3-o oA M3 A 91 o 1m-1 -.04. . 4 1. u

-. 40 3 9 1 1 - I 3 3 3 .0 0 0 3 9 1 1 4 4 9 1 4 14 I 3' o
t29 Q, -- w Iý DO 929 01 0. 0A. 14 E0 ,

9 .N-- .I. co ->4 N . 0 1 . .. 09 4 II2. 0>. .3 314 3t .1 00 I I 'I- 0.l .3 4 9. .. .

O3 ..a 0 0 a 9 1D 4 5L.- ~ ~
- 96 -,-zIa -os m1 140 3o4I- ~ 9 . 4 914 . 4 290 02- 0 9

0.4 000- 19 3.0 . 93. O 1
.0 24 - 0 3 I @.4 0 2. -39 .034 0 0. 3 0 3 14-

1-U .01 .1w . 3 -I-I * o 1.4 - w-.4 03 -4 3 0 .09--I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ; 14. 3 3 I3a . 0 94 90 D 4 3431 6*414 91 11 944 0.2 2 9 @0 .-- 3 3 00o~4.0 2.1. 0to,400 ~ I I 0. . 03 0 3 .1U 1.0~~~~~~~~~ .00 1N oe- 0 300 . 0> 40 110 I-0 3 I

0. >Ia aU 0 .. .3 4 > I .14 14 a 02 >1-0 04 3 .4 I I

90 .4140 &A".> 0. 3pu 0 I3 m Ie.10 U- 4 a-. . 4 0 3
.4 141- .- l14m %I : o !" 9 I. v) o41 m4. 444
44 90. 14o1 - tr 40~ 4 4 3 3. 1

.4 0.U 00 02 . 3 0. 3 0 1a 920 1 41-0 0~ r.3 I .14 c4. .. 3 6 . 4 0j.l. 41 .34 9 00 3 3 6 010so.0 11 . A ', 8.3I 3 3 I ~ . .911 1*0 .1
.4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ' U10 00o011 31 0 1 4 10 20 O.. . 1 2 4 31
14 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r 1-H .9-'03 3 4 - Q. -9)1 S ~

0. 014 1.0.3.3 .0 3 4 0. Q14 .l. U .00--C1-241

" 00

'0

0*16.- 0

u.4 144
O,3.0 46

c0. 0 .-
A00. O. 00 0

.G.44-4 0 004.U 0 F. I
.4 0M0 Q4.40 I

l" .0 IN 41 0 .4 0 41
I~~~. .04U U.40.

c 0 M :0 a l 0 0 U m i

0.0. 0 04'. O A. aO 0"s
6000 F. .04.41 .

w'.-0.a0 . 0z. -40 1S ,.6
0 1-44G...1 0 1 004 1. cmV.4O E

040.940-04c0-C. N1.04 2146, . a
fgl4 V-0-.4' .4. 0 C

0 .4 4 4 6 1 ' .4. 0 0 U1 a .0

0 U 2eý.4 F 0 to ,P* 0 '1 9N "
.mIQ0 U F. I I II 0 .4

0 0 1.40.0.4 II 44.4001 F.OM v S. M . .
..

U
.. ...

4m

4 -006 0.00 .O0N 0400. ~ 0 04 .4

I z c C, v4 $4 044 45 a4 UC 5000 re a . AA1F.
IV m 40 4- 0 00c UF m 1 11 . . 1 4 4

0' %9 2.2 0 0 U4. 0

MIF. .. 4- 0 0%.U 0. F 0

0 0 m"4> 0 O -4S.$ 00U U '4 UE 0. .4 0
0 54 004 L4 .4 I6 04.9. 4 0. .60 F0 r40 F

F. U 0 I S O I O 4- 4 U4.

1. 0 :0.1-050 001 4 0
0 4 44 . 00.0000000 0 '1 0

0 M01 %.4
0. U - I Q
O 0 - u -. - .1 11 .0

4u0 5 40.4 .4 0 0 4. ca
M0.4 0 .4.2. : .41

$4 $4 m4. 41 0 0
a O .. t . .5 ... $.' 4 0aa -.a VS. 0

aia

mu m 1.4.40
UF MU A 00

40 .40 -.4
ggog .. I M

.0 $4 0-4'- 00.
$4 1 a.. 0 0 4 m a

S..4 V M44 '

~~~~~ $4 M 2,O-. .
.0.4 44 v 4
u r 0 04 44.00 . ~

-400 ~ ~ 0 010.M41'

A.4 U1 .0 0u4.04.

400. 0 .. 9 0.... 6 460
Q.0 1 $44 0L U IL44.4..

a 1." .004114.. 0 44110 V
OM I U.400'0O4 U 00-4 a0

UUM41 0.4000'O 6-'C-25.



0w 0 m 0as C:0 0 v 0 o44ý o

'1 00ý00 t- 0000 . I.
0 4 0 4001 .. 4-. 0 400.O-. -1

0 ~ ~ -.4.44444 Iý .4 41404as

r i' 'o 8~. obzH -z t-:
0 404-0o0

0444 0r c zQI

0.. .-. .. ... .. 44 G.4 r0 o.0 0- 01 00 E-00C
v ro P4 j.4 .4v 

.
I4, 0 0.-' m

w MA v uI- % 4-. 0 0

.- I 4. I lo 440 0,4 -.
04400 310-.4 .40  

ý 'D 8 -4 4 00 I..30 3 0 ..

*0-4 f.4 1. -4 .0-4. -40.J0

x 3.4,I m 0 m I I a cm u4'8 *0j ýI00 0 .4 40
v4 Mc 0 coo 00Q4 c4.

00 ý.4 Eý M I 04 9-. a i-4 .ý c4 e 1 wo

0000.0 0 '4c I 000o I 0. 4-. ImM- .44 0

10. 4,14 -1 1. 10 m - 0.. o4 w 4 -o.- 04 t.40
I0 -. 4 v k0 00. %*.'.I~ 0 03,4..4-.4 ., -- 3.0. x0 0 100 M4.4 -. 20 'u I . I I40u

4.400 a Q 0 m40 0 ,r -. 00- 2. I ? .0 V. 00K!
o - I.- 000..11 4 . c4 -l.0 "0al8 o o 4-. lo o4 O-. 0 11

04- 2. 14 '0 0.40)m04- 00 c .W o. 4-) 'a o x.0 II 00m'
lE 0440 '44 -. 14. 10- 'I A.. or 'to44 44M
.40o I Io r IL A -U o0 A . ~ 00-. 0004 .0 0 . 00

00000000 -4 a4 u'0 0 o M - 4. '
0 0 . 0 0 . 0 0 . 0 0 04. 0 0 '0 4.~ 0 .4 0 0 0 0 0 0 0 4.4 4-.0to

.4 .

l4.J4 44a .4 M me

V~~ 
0 4

c - u - 4 -. a 0

o04 X4 . c4 4 .4 o444V4.40 . 4

U0 w44 -4l 4. &4 M. o. m. *. mMw 4.m4-.4-.44-.4M o 0.04- &0 M Q *,.I-4.-H0-444H

.0W 0040. t). 0 0 0, o 0-.-440 o"'4 r"0 06 -4 o o- -44..0.- 0

... .. .... .. 4. 0. 44 N0 .0 .0 .0 -
0& 04444A A % A O

U .4 0. 0:A Q AM U A3

M 4 m ' 00 00 00 00 44 0 Q..44 0 .140

uO04 -04 _c xx =x
0. . N4 4 0 44 1I0 '

44~~~E 0040 '040 -44 0-a

4I00.'4 a M -4 400 . - v0 --4 00 40 0400440 A).0 .04 04 0d I- 44 0x. 0o4 -0 . 4 0 . 4 4
l.44 ) - 1 0.,4 0 4 4 0 . . - 0 0 4 00 0 4 . 4~~~~~~~~~ 440.64 4 r4 0. 04o . .4 A 0- 0 A 1 4 A 1I0 0 0

I 11 11 44.0 040 -o r. -u m.00 A.0 04 0

00 0I0- 00 00 -c 44.0 40.0 o 400 oa
0~~~ 44 .0 0 40 0 00 04 0*40 t . 4 0 0 0 0

u4 cI 0 00 40. 44 44 .04 444 44
0. .4. me 44014.0 44.0 0 000 01400 0

00 4 I .'04 0 1 0.0 0 00 0400 . 0 0 3Mo

044004 MM .40.44 00. 444 0 4004 4404 4 C-260.



0 HX

0 0 09 0.
M o10- 0 0-c

0 .12.1 0 v . 0 . 0
-- 41 04.4 .2 A4

40 .0 00. 0C 04J0 0.. S

aow 0 0o 1 0 M O m
~.440M.V20 0 O .0.0

IQ4~ m4.4. I4 4 0 l 1.. 004 0- 1

m .400-4' .40 j40.404 .4
-. 2 1 143 r 6 00 m 9 4W M 4 0 10. *0V

lo I u 004.. MO r4 oM >44000 0

I ~ ~ ~~~ I .4.4. .0.. .44114410 0 -4

.4 4 00~0 .40.0 0 0w 0c0002 2 . .00. 4 0

.4 4 ~ ~ Q, 00...40. .4 A --. 4 I I .1E.2 .4z-4.
4 4 4 4.444 0.r0 .4.. *00 .4 r4> .4 m4. 0
4~: v :3; 44 3.04 4 4 ..4 4 0 I0. 0.400 A 100

4~~~~ Ai 8 >4 000 --M.... -0. -44 or 01 0 a 44M .0.0

I4 m4 r 44 .0 -.. 4 0.4 00- .4 0A 10 -.4 .4- 0m 44A4

4 0 4 44 ý r .0 422. rx 0. -a.4 o

0 04.V444 44 4.I - 0.4 .4 0.4 0. 0" .4m ~ 00
Of o.00 .4_ 41 .

04 c4 40 -a.4 4 0. . -4 4 4 N4 0 44 .4- o. I _ 0x0 44 .. I 1
04 r4 X. e 44 .000ý c."2 wv o -.c440 0 u 0

440 04 .4 0 11'c04 ~ ~~~ o 44.0 .40.04 40 d. 10 N 0.. 4. 2 0000 .

4. .0 -. 4.40 t44..44 0 t4 0 .4 0440 0 . 21 ..c 0o It 00) o4 N- o

o4 0 40. .4 ý ýo4 4 o..40 m.000 0- . l .40 -000., 'a m4 %. mD 0 304.0 o - . 44 0 .
Io0 0 0 0 04->> 44 4 ca -.4, 00 0 0 ý 0 0. 44.00.400 0000 ;8 A

m44 404ool f. v44. x-4.-M4.. u0 . o.V.-4 -4 4 4 . -.- 4 4 -4..41

E: : ý0 .04 Q.00. 0)ý a,- 0. 1-4.- 0. 0-No 040

Q4 40 -4 400m

o14 4 0 4 4 4 4 4 44 1 4 4 4 4 4 4 4.
44N 4 I ~ I4 4 . 4 4 4 4 4 4 4 4 4 4 I-. I0 o

c.00

o0

w 4 .

0440 0.4 H 4 o 3,A
-0 m4-44 .4.-.-4.4 .4 0644

.4 ... "a 00 wO I 0 . N.4
o. 21 1 I>4 f,1"0. 2

c4. 0 t44 444 Z0N %o l
v - 0. o000400 0.4

4080.4 r i8.4ml -. 4440 zo40g o>
.4~ ~~~~ u.~4 244.0 4

.4~~~~ co. 00 . 0 0 4 .

Iz c 0 0 44.4 0..
o.4 m0I 01 .4 0n.4

, - 4. 44- 44.0 6

0 44 I U 'l . .4. 0
0441 0. 4 0 4 0 04449.o00 0 .4 04 0.4

N~..44. .4 ---- o 44 o 04.40 A. Z0.4 44 A44.1 440
4 04 o 4 10 00 0.0

-. 4.4 00.4 .40 m4 4
-- 4 w.. H .4

0.0. . 40 -. 40o l

.40to 0 U4 4 Q

0.40. A 0 M4 .400ý2 2o >,4
z o 00v N. 0

0.0r

c0 N
0 0ý

C-27



14 44 (

.41 4 H 4
c. o -' m0 -

4.. i x E.u '-'o Cý

o1 14 RH 0'

V4 -v 0 44 H G" "s

44 -.4 0 loo 414044 c5 I
mm Ic-1o l 0 :3 AS c- o

0Q I 3 A ' N.-rI Su Clýv v 4 -

10w I 0 -. 0S : t. NH M C 4 I o

g-1) o v4 'ga z01I4a4"--1H
U- A >4 0440 44444 MM r a(4 04 0

4 4 4 4 03 
.)H U Cm C C 0 4 1z O

M 1 404 -- 4C COO Il.-155- 0wH

o41 4 C~ HO v m 44- m40 .4,4 11H 4. 4 . 4 . 41
'N 0 H I 'C u. .O. 50 .0 ~ H 04

CC I I Hm -jM'I 044 Cm 41 41-.4 C CCIo 0o I. -H> 14 r

0~~ ~ ~~~ o CN 'I owI00O C 0.44 V " 1 C 4444 1 4
H~~~ o >,L4 w ow 14 I t; 14ov4U -I 0.0 '10 0 I

II 00o C-c m4 . 14o4 . Cm14 444c w4 5 nSA o0 1

C 44 14 4~ r m MO U 140 0 140 14 0 5 v4 -~ 0l 44 c 441

a~ ~~ ~ AC a II- 
w 4 440 

NC 
- 4 -04 464' C 1044C 'C I 5 4 0 I 0 '-4-I0'4 US 144 'C444C C m1

v 44 C1 14 L5 I I4 cI 14 C--M 14 o
4U AmI e4 f>4 4~ H A *- 4

M MC CV

Al C -o 4 4 444 44 - 41 4 4 C 4 C

44 14 Co 4 mI 0 1 ) 4 0 044 H C 4 O
142- . -- -.

U No0 4 4 * 4 ; ;0 0 ' 4 , ~ ~ H 401 14

44' 44O4 
1

0

S IMI 0 4 . C 40 00t 4 0 114 ' 0
A o 0 UC 0 ~ ~ ~ ~ 0 0 00 H

50 0401. I IH I

V C44 C H I2 0 A4 U A 4 4C 4 0 ~ 4

144 0l U" II 1 HO 'C -A-4 0 0 1144 0 6 0 S1 4 0 1
4404 0 I r6 A C 4

1444 4 044 44H I4111I4el o-0o 0 0

.c u 
8

3'C 0 ! p

A14 Ao E .

SM" 44. 0

HC HI I

.00 14C-28



0r 00 c0

.40 c .0 m0 'a 0

o-H 010 H -H0 HO41~.
0 W a .40 0 . . H44...

0 U0 -4 .0 !- c- - .. 0 0 4 04 . 0 - -

0 41 c 0H > F 0.04 .4.- 0z IQ, 0 .00 1.0
0 -H- 0- a V0 4 0

0 1.0 a- n I 0 0,.00. -H0 O . 00 0w o aI 0 01 0

00g 00 0 0. 0 4.0 - `:-

u0 0 c 49 r -000 .. 0
04 40 a," me0. A0 WI 44 IEM L"-C -:- w

0 00 r -H.r 0 ca w 0 m-H 00x-0 OH 0 0 04-. 0 -H u0X900 1 -HOu 0 4..- U44.. m44.. ,0 'c.0 r4.0 OH .0 .. ' 0i 10 0.00Hýý ý I

X 0 00i "M Is4 0 4 0 .1 1OLO 00-*~~0 00 0. 1"0 -H -HI1 I1 000 AH It On V4104-... 0 .00: t. S0 0.040
S-H oo 14.2 4 .Z 0 0 .044-VO 4 0

03 .40 H0 10 01.6 0m * 4 '0 0o 0 .
0. .. QHC C 00 1.r 1.4 04.-H .0z- a - l. -H~-H"." 0 .. 4H .00 404 w H4 .4X.4 100 E-4 4. 0c 4.

.2 O Id .0 I- Ae 4.-' m. OR 0.4 0 41 0.0 0. 0 0 004
00, U 00 0 0 U' -CO H.0 0 H H4H .0 0 r- 0 M H'C k

0d w. 00 I - -H % ( A 0 04 .0.4 c 1~ 1. '0 .. 0 0 4 0

.4 . 0 0 .0.~ 00. 0 0 0 0~-H -0* 3 4040 0.

04ý 0 .0 4. A4 03.46

Q.H m- ' 0 C-COO m 00 a m0- '1~440 0 .- 0 40.0 0 I 41
H. fI 0ý Hg..0 04.0-H 0 -H .0 a. .400 t; C- 0 4.0 -H .4 0

-H 4 4 I -,, 4-0 0 v 0.444. 0 4- 0 0 4 4OH 0 H'900 01
44W 4. 4 0 0 0 , 0H 0- .0.ýo 0 4. H4 00j
0~> Q0 r 00 0.0 r-0. . 0 4 4 ~ 4 O X 0 . .. 0

Cr.4 C C 4' .0 . 4 0 0 00 0 . . 01 0 0_ 0

0 0o 0 0 UOluH~ 0" 0- we'CCO CICC C0 0 0 >C CCCCH CCCOCC

g j .0
t H . - .

0d 4040 0 I 1Dr -ý H .0 0 0 .
0 4-z 0 H0 0z 10 u0

O 0 I 0 a.4 00 0.
rH . .4 a--O a.00 4

0 4. H4 4. .. H .

0 r40 .00 . .. 4
0 0 0 0 H 0. .0 a0 '0 .

m 0 &M 0 0, U
V Q4- a4 m H0 0-.- .- 00

. H 00- 00 407 00 .- O- .40 .- C .0-

.4 0 1.4 0 4 . 0 . 1 .0 4
l .0100 0 m..0 U 04. .4 4a.C0

-. ~M -k4 03 01 000 4 . 40 4.OHO-

C ~ ~ C C .. CCCC I I 4 0 -. 00 400. C A 4 u 1 -0

*0C C 0 0 0 a4 .0 00 ca I. 0. HOE~ r
C ~ ~~ ~ 44) E-. H0 Cf C 0CA 0 0. . .00 0.

C00. 00 0 C, 0 0H00 f- HI. 0 >1 0 0-
C-H 04. 0 C 0.0H 0 H m 0 0 HmC-

CO 1.. 004 Mo C 0 0 'I 0I00 4.-0 0 0

0- 04 .0. C 41 H 0 44.H - 0.

0~~~~ ~~~~~~~~~ CO .4 0C C O- 0 0 0.. - .. 4 00 4

0 0 40 0 II.C .. 00 0 04 mz c4. 0m -HO

CO 0 4.10.0C 4- C 0. 0 m00 0. C1 0 -H 4
.4 4. .. 0 0-00 C I% 0 A m4.4 0 .0- 044 0

0 CO .000 04-.4.0 C 0. C 000. -H 041 04 0...
0 I4. 00 0-H IC r. Cc H 4 0 H 0 . 40 0 0 0 -

2 CO 04.0 4.-.4.C0C I 10. 0 0040 0'' . .4 CO- 0A

-H CO -o- 004aC, O O 0 .0 W .2 00 a r r .c C H. 0
I .4 4- 044 10 4. .. C C 4.0- - ..O .43 4-4 I 1

44. Ca.. 4.V M. 0 10 H OH I C CO 0,I0X0 0H

.40 4. 10 10 'o. H 0 CO -11 01 H -H 4- .0.- H 0
COH- 04 .4. C0. m 0I .4 C I H. 1.4 000. r

C ~ ~ rO 00 0144. C .. .CC C. 0 >-CH 144 0 4.4. 04 .I 10.4.4 0"
0 C 00 4- .44 0 0 11 41 0i0 4- 9.C

x - 0144 .40.0 04. 4. a0 0. C 0. Cv.I C-

4- 4... .40 OH 10 0- 4- 2 0 00
U C I. OH 04.1 0.U H4 I0 C H. -- .

444. .43 30 00 0 H C CO 414.
104 0 H 0 4. 4.- 4. H C 0! ' .0. It

H HOH 0401 .. .IHM.M 4- 0 0. -H C 4. 0 . 0
'OH 0 0 0 0 G- r4 4 04~ -

m l 04 -H so.H 04.-H 4. C CZ m-0 0

'0 H 0 00H

0' 0 C COr

C1 V 0 44C 4

C-29



-44 0 ot4- o..
M. r4 r. n 0 o. 0 .o

410 -. Q. m4.4
-' F. r4 4 .0 I 0 4

o ' 044'00 0.4 0c r4404 - 00 '.41 of4 H0 . . 004 0- 0 -
I, u0 c04 0. 0 > .0 0 0 . 44.. 1'

'0~~~I m0- 44404 *0 00 000o' 010 4440 0
0.4404 0-4 0000 4 0.4 00r o4 444 0

.4 ~ ~ .l m444 all 04 -. .0 4.4 010 1-- 0
.4403 .'4 10 .44144- 4)

00. 0 440o M.4 0. m0 M.4 0* 440 844 00 04U0 m0 00 0 v0. 00 .44 0 4F 00 0 0 0 0 -.
.4- r. 04-4.4 0-o- 44 4 .. 0 00 00. .4 4- 4 40 1

v'4 o04. 440 0 04 043 ~ 44 . 4 > - 4 33 0 . 4- .c. 0 0 >40..0 ý.0 00a 00. II .4 0o 041 .0
00 -- 04 0' a 0I0 I 0.4 of .. 030400

c' 00 a 00 0w 0f -40-404 .. 4044 0 4: 4->4 00 0.0 0 40 40l 0 00 &4 0

0 ~ ~ ~ ~ . a-. 0 0 .40
V 0. m4 > 0 4-' 4. .. 00 44-..

04 -- 40.0r v 3
-4- ~ ~ ~ z m1 - .~ 04 H 404 V

> 4 -44 E. 4 =I. 0>R-4 I404 0
-. 4.40 0l 0,0 440 .20 - 01 1 o0 c4 6 0 4 4 4 4 0 0

r 0 044.4 M-4 344.4 o 02 0ý A. .008 -40 I 0

UO 440 444 44ww m m

0 .40 , 000 44. . 44 0. 0 0 4 0 H4o 00.1 .4 0 .0 e 00 0 .0
Mm. 0>40 00 14 4 0- 0- 44 :00 4400 o44 . ft~ e 44 04 040 0 0

I3 0-.4 04' .0 440 r440 0 0 00 003.0 0 0 4. 000 400

L4 Q0 0 t- 0 e 9*0641.

0 o m44 04 'a m.- z .- 4 0l

0 o '-4.40 : Q0 w0 c4. 0 M) 00. 0 WwQ

'0 0 .4444- 00 0l .44 .1 0.00-.
o44- - -. .3u 4 0'.00 0'.c .c D 0c

4. 00 0 " 00 U ) .' e m

If I.4 I00 . I4 II. I4 00 w-0 -

-- 4044.4~ ~~ ~~~~~ 0 444 4 4 C 4 4. .. 44 40 0.
'0 4 04.-00.4 0 0.4 -4 4H0.4 00e'

00o r040' I- 4 4 400 . -

0 ~ ~ .44 '0 .0 .4' 4 V >4 0.0 l r4 4-'0 444 40.)0 ~ ~ w 044 0v 0 a,40040 04 0.404 4 04-)0
. 'a0 4 0 0.4.4'3 44 ~ 4 0 0 0 4 4 - 4 04 0 0 4 -

.4' 0044.4 . 0444 'o 444 4-c 0' 4-00 042 4 or0 DI 4

.2 440, 4 4 00 00440' 1.'4. ca 'o Q o40 0.4o al. M 41 A a44

.40~ ~ .400 0040 0-4 0 f E40 c 00 g40 '0-4 0 M4 4 40
m40.0. Vn u0-0.. 004.44-4 0 0 0 .4 0 '.4H44

m. 40. 0. 0 0 0. 0l 4.1 4r I "m 0.4-

m" I). "0 3V t .
Q4z 4u " 44 1 V 444 0 w

I0 0 . 0 . 0 . 4 ,.. 004 0 4.. 00. I 0.4 . 4 0- - m .. 1-
144 .4. M40 44 443 4 444 0 A4 4 X 44 I*'

'044 c. 00c 4. 44.0404 - 0' 0040. 0 0za 41 o 4; 444 0.4

.4 04 0 0M --. 404. 40 0 0 .4 O.4 0.4 44 -' 0 .4 -- 44a,4
00. 04. 44 .00.0.64 440 4 4.0 0 0 4.40 .0I - . 1 4 4 0

I4 .60 1 0 Z4 0 . 4 0 0 0 4
41 w 0 '0 I4 w w 44llOu r o m0 M4 M .

-4ý ar om 4-. "ri -4 41 0
40%. .o 0 0 V - k "4J 0o ' v 4 04

u V44' 0f a 0 4 010 4 4.4I
r0c I4. v.4- '..'-a 0 11"

'0 '0Q 00 4 0 4 0 0 3 40 4-
0.4 0.00 4 0.c 4 0 e0

'a 'a a o0 D- 4 I -v M
'0S

r.4 4-
U M. e

r I444~
0a 4 4 4 4 4



>"0. Co 0i

.0 0 0

Q. 600r 0 04

-. C H UO 4a A2 R
I~~~~ r244 H444 .0C

- 01 400 ).H A

O c- 202

3 0 -0 "0 0
* 4 0 6 s -su 4

's r4- 42 - I
I U "~ ~00 10.40 0 H 4

544~1 000. "00

I -HG4 4 0 OH

-120 OAQ1 4400 0
I QA~ 00 6 0

6 22-0 m4 .4" "0 06 r4024 0"0

r4 k. 05 . *.-0 0 - M-
0 14 014 0-" "0

6 ~ ~ ~ ~ .I 204H 46
0. 0 am0. 06 H 06

I4 .4 OX4 6 01 -0C
I) 0421 0-14 040I2 ~ ~ ~ ~ ~ N H 44'400.

to,. 42 -H a H 6 10E.05.4
m5 0. 0-- 0 06

-M km 0 L-- 0 - 44 9 0 a0 0 V.

0a t 0'41 63"J 42 0.S U~i12 4
H0 00 5 0u 0

I , 042 42r "01 0-s Q 4 0 I a 4 0, Ic i r

m1 1 0."100 64 a40 6 14 .0 OH0

-s> ~ ~ 1 0521 0

444 614> ' 004 42 c 24 cUX
0-H 00.2

0-

0,

a a

0 4

00 42

L044

06 6

00 0 0

ia x"0 V 0

044 0 A m M
00 60

00. 00

0. 0

42C- I



-H4.44
o z.

W 40 Hm 00 0 0 ICr 0 IC r WI oc
C C HO -H C CC .H C CC --H M4C

z-44 o 44 ri O -O 0 O H H H

'a .] 0 CI CO >H In- C I'S .. M C IC>H

D. 044 --- --. C ý- -,- C .O.-NO C C
I- 0. ma H H. >. .O0 .CW0. 00 -a, W

I ~ ~ ~ ~ ~ ~ ~ ~ ým CAC C.H 0 W0HHC 0 H
f. -HAA z. 00 ox 0 4 H- x m mH Q.H-

I 0 A H -H- C

rC a -) _V -- IC &: -- 10 11111 10 1 191 O 1 110 Mmm C- CNN H.o H 00 I I 0 0

mI 00r HM W 0 -. C-H .0 (- .9.. - P0 A33Q AA tom13SýCm wm . mI C
u QHNN OW C0 C N Co HON 1H-H- w o Z Z HHHZZ -H-H-Hw%~ U a 0 2u 02Uu0

Nm 1 00 0 m H-HOm v0 ' .N A A 00 N 000.4 NN N z z
O 4 000 0- - -a.HH 222uu 0 WW

>O I >11- H I0 >I>, -HH- > >~0HH
I I I 00 v20 ca o w T I NC CI 111 -HHH CCC

HH -H 0 CH 0 C-. 00 4x Duo 00 H--

u I ON .A 14, mHN N ), H0 COH A o.0 A
ýý a: -dN C NN C -HH

1  
N2N NN NCx N) ai01- N.)4 .4NoN

Ia o- 0 OHHHHH HH -HO 0o 1- m I I 0 mI C
I ~ ~ 0 000 o H>. E.N.N4

4

4 " 00 . 0 0 4 C -

I d( . I>CH Cx W, -r.0.00.. I al2 a3 0000 000 Q0ommc
I H- -H 0 N .0 0 0 0 000 0 0 QC)WtS ,-l ý( -1I-0004 H N OAA EUOEOQOH A A A

I a. o C Nl I N I I I I I I4 XI.C 1 .. c
I U00 04 . .40 00000000M 0W

CI A A NC- C I ..4 .0. 4

u 00> 0o -Hm0.4 C

0 . 0

O 0
Cý o .. w

HH I I

a 0 
I

0C 0 0

0-H o o C 0 m vo0

-NC I 0 0 N0

4 ~ ~~~ 4wH0 0 .4

4 c 0N ZC -

I o 00 0 0 C IC

C' 0 00m

mZNurs - In ' I

03 Nm H 0 m

0' 0 M0 v tp N 1
CO C I

0 4 Hau N . 0Q

-HA C 0 0 A 0 3

0 a N HA u u
z HNv C 0: U . 04 .INm

-4 H :3o5
O l ac4 0 10

C -1 0 WI o m

0 OH o4 H , 0 HmO C
0 I 0' 0 I -H

CO 0D N
O ~ ~ ~ ~ ~ t V 00 H N I CN .

I C N-C'



r
0

11 r 0.
41 12 0 11 0, 0 ý v -ý 0 2 1 0 Q_

v 2 'd v AJýv v
.0 m:3 >1 o to toA. o ol wo

.44 v N -oo
o m m

>1 coov Ado E.

c- o r
,o :3 , .a I m c: ý :61

o v v o Z k row w-Ac o.Q .6o-ý V A "4ýý 4 ý ft o u H 4 v I
'a o w -A v v o m o 22 oloo 91% Im

u um 4ý w m, 2 w U
a. 1. o 'a . m 9 u w w

M , v > v ;8 0 Q Z,
v24 lrj cc.am %m o om lo'l

Q.- 16 .184 wex lei 1:
Io.uo I I 'd am, - ro m U a o r

1*-19 f3 40 o"zo v 6mzi m z ml o colol
P_ o . v m o -it we

Eý 'm . 'a
I m. Is .4 lu I

X Iz w a
oN 4" o v o

U Q r:o-.C- 4..
Z-- a) Vz cov-H I. v a. U o k v izz r a

v z v o = v Iýa i
m1m 1,W jr -90 o,

81 m. %. u ra m o-;
ogý_ WaX 4 v

o r wý 31 M w Q u 4 z o a m 'i'l, o A v lo ",_ W .ý o Nov v o .8 V t") lecl MA . o'
w V- I + on I V 'a z ý.o uzv z o 4 r o w rQ2 Ij .. z o o 

v V, oo
o- . - 0, m 18 v g I

ýx ow
'o o ld IN& _ý, 6 v

vw m v v .- H M . v us G 0,
r :3 old w o c u a a mv .- H-. :ý.. v I
.o o Q, ýo 

1 2 o
;8 o al olv . . G IN .61ýo ow v > 2u

Voo a3 o mvo4 A rl

1.*.,ýý- Qw. me o A4
H PY me I r m mme (ýý

M 4- _ýl
_.o M o o oýx o.. -o

o m.- z ll:ýl so o mE. m ý.cvv 'to

.H M w u o a.. o v.0 c r oýýo 'u 'I um *,a m
so v

m o -Ho r-H
.o w o 'CA V r-C -42 Z a. 6 % m

v a v E-AM X"
V c,

z o r 41.4 m v z x
o w N 0, 1 a w

I z

u

z F. k
V
r
o

o o
v M A Q o 6 o r Q 0 v G o c A 4

v v 1ýo A, 0 -.. o.9 v.. .80- 1 V,a 0 v V, m m v ol c o 0--o r m m m M 02 1
mw mu o loCIM, ý11_ 6 ý,t) .1 , m c % sovo r v 0-9 Vo c Fol. t43, gr 4 v M

11 Eý0-`-, Ift w o I o 6.1 -1 HE. N. 4 Fý Q ý V, , 1. a -ý +meEý. " c, I ro
-0 _45 'A r>

tL io I 
ol

l v o j
0 E. m . m , w "o "a 'I',aýo v. xv v *qmUkww AfflF .. Iv Of- vvvffl.6v ft x A 0 v vj >10 *ý r v
o2A -so 

oA o-
m .. 0.41 X

N o-S Smolumm D.O.ummm v.um ca 0 v 31 M
o , H V o 14 14 f.A. 'E- I' '1- 9,1 * . ""14. . . o

Uýv 13,13,1 M wg 13,1,1 o 4
we 0 L! - ., ., ., . ,

tp zi aQw WIM o I
P, 0 >.lm w-H a 'a o 41 1- IQ o coo v u
'42 z

.c Z., "g-a .... I, I w z A,*f,,%zzz
3. to A - 'o V 4 o I x

e lo :ý 0 3 V v omu -1 w m- m
rol 2 -cc 'm * W, -a Z "I -M .6 E ca :3

v.o:-.mw" zo
"_l am 4ý mk-.u m m m 0 -u c

_ou cý-ý .1 m m m 6 2-c %; o N I I I I I > > >(we j. >,>,>(-. 'Oo6- =.S ev Q >:>
uoug.

cQ xF .49 1 o
:8-'9:9 1' ., ! be

m o o.lo.lo 9,vo w v
Co. r _2 S MO, I z c

w w M C 1 .2 1 so

> a:a; 6
, 4 .. ý: clo .w I o
ov

o
m >x w m m H Mwal w a mwwým ao m o 0 N I v t),:.c Moý V4 Fý ýuu U 2 uuu tau 8 uuL) qU

me

o I 
If o

r-M o I z. No t- o w o
u .4o 'S .4 'D. 'w'. M, M. I z, > I zzzbl >

u em ou luo 6 IUQ Pul "m
to 'o 6 :1 1 H" 3. 1

:1 M r 0 . 3, 1 : I I .. I , 9 z
3. 31 21 M V

re 6 m
z o

V z

IQ: to)

C-33



0 A6M

g~. s600 10 r06.26

.0VI _A ~'0 t

1. 0 01 '00 0-0 M0 0r .620
4, -...000 612 o..1. .0.-32 .ca 41.a- I .0 000 6 6

61 60U ZZU*~ . 6 0 .0 -. z60.6 0 6 .

600 0.1 w m ~ ~ 1..6 61. H 1.

0 .06 04w06 0 -. w0 00

o aw 41 '6.- .0. - 0.*416 ' 0
. -I E-I-

Us. -0-'- 0416 R 0 0~ * A9I6 1
or 60 a Iw0 l<. MO I .. 2 0616 'G x61 A .3

0 09 046 -. -H- )I6'm .' 000 A MOO 0 62 z

6 ~~O 0 "0 w 01 0 w 0 00- . 1w* .

0 -18 '0'0 013. IS~ C10, 0'1 0.,w 0 0a 0

~..0w 10 .wO I. -0 10 *2-. 1- 40 00
41 0-0 - . . 0o z1 I ' 0->.1 .1 A 201 I- 20 20
0~ ~ 001 I0 16 v0 12- - ( ~ 1 .1 . -I.

0 .0 0 k. 21-. 1w w .. 06. u 11. -1 0V 0 6C 21 *1S0 v 01 - 6 U' '0 0 2

S o 0. 0. I3 'l 0 20 S III .0U 6t M 6 - I E - E

*0 *0 m a. ! lýM 0 '0 10 oo IV

6ý -ml 0 0 m E -1 =6 0-H 6 .

N.

0 00
0 0 r- '0

0 - o- 004 on.4 0.0 .-

me 0 0 mm' mm
0 Olt~~ 00' 011 9 Ow .0M

iv . 0..01 -1 -1 1 01 0

.0~ ~ 40w-1 .mr w.. o
4141 01~>. o0 0 0 190r00I

0..0 00 06 00 10 .41 1gil VA 00.12, - 41 4 2. 1.9 t04. I

I -- 10' .. 2201..~~~I[ -. 1 .. E 1-I0.4 1.0MI 440' w0 w-vu 1162wl1-02.O 00 ?i-.1-6
1.3 MN I 000 0 6- 0 00d 06 66 6.

-6 660Z -- O 1. 00
414 00.0 00 .. 000006 64 ~0.1

I 00 0 .1- w41--.1-,2.0-I-.-.0-I2 1 0 6.1 I . 4

I 00 0. '0 0 r. v. 0l 0 0 0 0 0 00 0, 640 ).- 1. 'w. 0. t M 04 00 6) 2 0400. -. 0 . 0 .00 ý000 0 Ow0 w10 02610-

0 I 0 41 0 - 000- 20> ) 6-0 M 02 I 06 N -. 4.1 3- '0 0r 40 6
z 4100 ww w.i * O w1 +1- 0-. .

2 gg >a0 00 011 .06-I 6 '0

Or~~~ up, 0O.10 0.10 IPOi 00-1.. )O- 0-1 l u2 I. J06 '0 061

O r 2 -.1.14- 0 ' 0 .1 4 a 0 0 0 .0 0 m0 . 40 0 4 . 6 6 .
0 r- 0 v16S-4 0 L1 >1 00.0 -8 .

U 660 1-6.A 2- 6.10-H V,ý A 16.6.1 6.2mwi. 411& O0 0 0 4.
.006 111 1.4-i i6 . 4 -I 0 21 In . I

61 I .04~~~1 11 06 66 I ~ ' 6 1 -12 26100 0 0 .
0c wow 00 0 4) 1 60 11 I I-

1 zZZ HZI.1I.1IW 0.~ u- a,0g 0 00

9g-60w m 01 4606 U a 1--6 '0 40 a

1-i ~~ 1-20' 6W

0 I 4 0- 60,1.C 1- .

61 . 04 01 t,~2
41 1 Int--o,

Or Oh '0 .0.6 0

0. 0

C-34



0 0. 09-'9

40 I
0 -90 0c 00 .0 0

0 oo I. Oi.

N~ .. A.. t, o

941 0a 04 mN .., .09 00 11

99 9 0 I--. 01 00 -. 1.9 Q..9 .. I00 0
X9 9 -. x .0 45 1- 'a09 0 .0 .. 999 O9~~ .0 0 .- .00 90 ~ 9 49 .. 99

I ~ ~ ~ ~ ~ ý A X9 So _10000.. 91 099c mv, A(- A .m U9..00 0 0 ..
o Eý e

5 9 .. c >- 0) Il S l005u-0459900 Is u9

u 0 I m~ osom 090. 0.1 4) t -9 II t.0W .00 a 1.

9.9c C -94 95 a 1-9 .i t. t~A 09494- -..9 000--.r.- 0ý 0.9

9 9-9 9 0 a0. 10 0.3. W ~ M9 IIE. 0 *. 0. .0

09- ig9- .tt ,I1. 1-994 .- - 4 4 4. a Am m~. oi 3o w 0500

cc -9 I 1- . to a- v n
I 0o o >9 1-9 .40 94 09 9 09

'a 0 1.I9gw 1 w a

9.9 o 0 1.49 .4 0. 0 0 -4 0 0 . mo
w 1. .~0 .9 .9 10 I E.-1. 4 0 09999

09~~~~ ~~ 0% 90 -_U R0 1-0 1499 -91 0 0 .0. 9 9 3 0- 10 Z@

29 0. 9 0 94 94-: I@9 .00 ,
9 o 0 In cc09 110W w- 5M 0 I . . 00 90.09r w (9 0 0 0 . 00 . 9 0 m.0 0 9

o9 w 0 10 1-. 0..94 V 94, .IS 0.0 Z 0-I *Ie

n 9) 2 0le .0 0 0 l 0-
I 0 2ý 1- -. .0 1-.

00 : .9

8.9

v 001-41 4 A a m1 E990 0

06 o. ai 9909 000 n0*.
419- m IA91 090 9 0

0r0 0. o99 c. u Q0 v. 0va 00m

O 1.99 09 94 . f-.1. 0 0 I a---.0 Q z r

9409 u .r 6a- .00 0 .I -1 I0U 0. .9 - 0 109.9 0

m0 V-9 1v 0 00- ..At 909 940
o.013 -9.0 e I90. 0d I 99-9 00 9

00ll0 , - B.9~ I9 0 0000 . 0
0~~~~ 940. 00 1- f.90 N- 0.. o19- E 0 0

-. 0999 2, 4 1-. 99 0 090. .

00 940 0 ý u 0001-9.9 Is0
6.90. 00 .90 1 I- 94I.. 9 0

0.9 u 99 .91-m0 9- 1. '1 92 Ia4 49
I9..0Mg is 09.910 V 9

091- r W9

09. 0.9 .9 .9
V490 f.. 0 0-

.9.00~~ .0 1- 00 9

.0 0

C-35



00

010

W W -u*.1 --40
No N- Ix4 1

4J4
IIc *4 aO0 O

4- 1* 484
0U 0j4

IM4 e8 o-- a, 4 "I0 a44 ~ ~ a ,~* I 004m
II w0* um 00 Iam0 'r 44

X44 4o00 a 00
NN 00l g-8NO

00 8-4' I 04 0
0~~W 0.004 044 0 4

04444~ 44 44 u008- . .0 --

0-- 4-06 0000 a 44 8- w, ow

I0 I 44 I A I

13 .24 444 0 4 8 4

0W 442 M0.Q
a v 0 .. N w -"0 M a I

~~.-4 H1onN H I
'0~~ a-- 040 I 0 0 0 0 0 4M 4 4 -A

u 0 o 00 u > n0 m- 0
v 0 v c

8 v0 o

0 -4

0444 00 u4 0 a. 0 0 .0 4 0

040 440 a Na1,4 0 -
-..-. no a- v .1 -0~ 3 00 .

-- i~ Nre>'0.~ -Ai -4 0 nW

00-i 0' '' 0 . -H v,-
c .4 0 .. m- m4' 4 - S. 0. 0 A4.4 004 0.

I- .. 0-.. , 4M 00 II - 04 02 '04 48 484 o. -A,48 006

m- NO m4 N' 0.0 44 c 1ý 1. A.~ 0. as - 4 0 4844me
t00 .44444 00 .0.- mm N4 ONI I.0 0e 4--404 W -000a

* ~ ~ -. I - r. 0.N-4-'0 II 0.. 4- .0 0 00m 4-4 ~ -iN--i.NM ~ ~ ~ ~ ~ ~ ~ ~ H 480I!- -4-'U44 0-- ' .8 '0 I. 00 1-- I. 00-0---'0.8..044 .0.i.' Nw448 m 0j ON 4 000 0 " 1 04 ' O
r~ 11 44 48 Q-OOO. 10 ~ r 4 0-440 0. 0... 4N0

04- 0 00 4H0.0044 44 44U -- 4 t- I--4 0 0.. 4 00.00
'0 o00 NE.4 .--- 400000 08 4 0 0-- 08 0-- ' .-- i-

00 4 04 N10 04a4 00 I.-4 044 00 0110 0! 0o It 110 0
'Ai 4-0. .0 0 44 00 0 .i 4 04 0 -44 0 4 40 O 0. 4 4 4

v4 -4 I 0444 lo" I4c801. oe ýw
z g04 MOu0! : -0-. .3I 00 o.11 mw: c I 0--i 4-8a

V. 4 00 10 al-4 4.u0 ..OQ kmW 0IG g %lA0 N'

4-~~~~~ ~~ Imm4 w 84 0- - N 0 4.-.

( N 00 .04 u, I a-4 0 0 t. o4 0g _o0U 00 4

" 0. 00 40r4 1 0 44 -- 0. 0 N0 ' N 4 - 48 4 48

Q- -- .. z 04 'I a -.. 0 >84.1 . 2 a A I
0 I 4 M4O , .U 4 4-44 0n o04 48 4 O I oai~ 0 . 004. M O 04 4 .48 .-- 04 .0 M .I - 0o I GI 'f0 o - 44 048 .00 ig- -

44I4 .A 0 444 a.. PO. M 2 o ~ ~ I:~

48ý '0 m0 o - m mc 44 m80.444 444. v'.4 )u -cc 0 44 44 M4444--i f 1- -I F. ..c 9 2% r

: I I(- l .. f a C v-M6



A S N 2 40

n009.

W.0 00 44Oc

0 ~ --44 44z 0 .04 4

8-. I' 0 1 4

42 4

rMA W 00 4
zAUN -.. V44 d:

no A i.. 08 44ý:

w WA0 0 4 1.
0 --A.14 0C 0.4 I

44'0 04 P.0
3 001 -' b

0'0 ~ ~ Z' z10 4 4

000 44 04 4 4 r-
OH 11x 0 42I 4...44 -H X

O 0-4 '0 0 4 a

4440

a.~ ~ CD 4H 0-4444

A 14) 0422 44 04
A0--V 4.01 444 0

$m4 44 4d 44 A1,-0 '4.4 44.4 Ad4
04 a. 4 0 ..~.$ '' -- r -U

4 0 0 a~ o 0 .0 '0 0'
$44 4. 4. C A5) 000 0

04 10 0 -'4 '4-

04 u I0 I. ..1 I .I0

42 34422024 M2 42 aCIO
00 0r0 0 0r[ 0100

lf- .% 4. $4 10.' ' 1 1 -'0

04~ 4 08 11141 I 2

0 - -

0 40 '0

I- 0

* 0

0 0 0 4
Q6 0.~ H 0- 01? l 1,rg

1 0 0 00 01 H1 44.
0 ) 000 4
'O 00 0 44P

.0 l m0 44 > 44 0a. C

4 , 0 .0'0 I 0~04 0 -40-0
0 4 .42.01 4 -- * .2 1 4 4" 1

4 4 u '40 444 4 1 40 01 ' 0 0
4 4 40. 0 0 4a.- 0) 4 -- .0 . '.8

U . 0 II-0 0 04 ' 4 4 4'2H 2 0 0
4~~~~~ ~~ mi. HON'0-4' 0 0 0 H O W

01'- 4242u 0 40 0 w411100
0 0)

B~~~~~~~~~~ 810 0 042 -' -.- n.-a
4 a. 4 a a. -0 00 10,0 -. 0440 a 3a

4 14-40.2 0 4'4 0P H O '40P4

4~ ~ 0 0 0 4 ' '4- 0 0 00 '

4~ 08 4 '0 0 0 fx4. r N .4 00
'4 ' 4 44 0 00 H, a. 0*0I V 1H2 0 0 0- 4
4 4 4 0 4 4 0 . o .. I - 4 4 4 8 -H 4 4 0 2 4

04 a 4 42 101 . 02 '42" 42 o$4

-"484 - H C-30



AA A A A A A A A
* * * 3 14I IA A A

A4A A A A I A A AM
I~ 40 I I II A A A

o o. I

14m 44 0 44 44 4 4 4

4 4I or44'O I a. 4 vw o 4 "
E. -.W 'o'-ýo om.x.o I, '-'- S - -o M . 4 4 4

I~ 0 0 0- 0o~ 1. 0"' 0l w.. $4 $4 ' '.o r

I .4a 0 0o I o .148 o E. I-. -. 0. 1 443v o 4
I~~ ~ - 4-- - 1 E -o

I E-H X -- f :3 fl C3 N. .-..,.-r4 kfl 031: 03 3 E- X V 0C 0

u, I .. cv'0o o- - x'44 o.- -o r_ 0 c444 x4 0 20449. 94- - pW 44 I - . 1 00 W W- 3 0 4W . 1 I l'I m , C4 -.N I0 vt0 U a00,. MD

H I 0 IZOHOxO'0 x 0 30 0 .2-HO 0 0 90 o OH S 0 0 0 42 -Oc

m 4 00 14 I o. 0 0 I L- 400 Iý I-[ I- . H 000 wI
r I m i 00 w 4 4 I Io 44_ 440 ~ 2o 4000 W i o n z 22 oo-4

x H z I44C.4-0 000 I I.-04-0S . 0 I o H'4-0 010 II4H$"0 0

4 ~ ~ ~ ~ ~ - o r. M 4H I 4 4 44 4 4 0 -H 44 44 44 H I 4 4 404o -H 4 Ho S $44444o43 H **.4440440 *$4440440 5.444040'4~~~E- H Q w4 44 000e.0. H.'00.00. '000.4.00-00 0 . 44 C .
04 0. E0.4 H~~.Z 4 . o0'.o- 4 o2 .. o'.Z $ .00'.0

:34 V -a0 '' ' - ' 0 00 ' 0 0 ' 00 I '00 0 0 0 l' 0 0 0

04 4 MH 04 OIO444 C X.0-0H'O 04'0-0-0-0 004'0-44'
04 14 .4HH.4-.4H -.ýHHH4144-H - MHHUH4- H- nHHH44-4

0.4 . 4 I 4442 14444141 44442 11414144 4442 14414144 44444 I [414144
I' 0 4 UI 0444444444. I 10444444444. I10440404040. I I 044444444

.4 0 4 4 44 .H444444444 344 .H444404040 44 'H440404040 444 H444444o4

04 13 4 0 40- OH -0H O'. $00-4 0.0H0 O ' 40. 0H.H.O'. $40'4 004-04
04 U Hf0.. lH1.H4.14H- 000. flH1.H4.14H4 24. '4H1.14H1.H4 200 fHH4.14Ho.

0' 0 ... *C0.4.. C .. 0'' .r-22 o 22 0rO$ 022
24 4 Z l['4 -I IIH.40 2 1H4 ~ 4 2 IH.

-4 A A M0 '

I~ 00r a--HO04 4o otIf-H(.r c.r

.o01 Cuuo

61 0 HI 4
;88o.-I-.l wow Ilo8 IcA

S cO I q oo o

o 4 -4I" II

42 4ý 44>M
I I I W W 4II4

A 4 ~ 044. --. noxo o mo. - -

. . 44 4 .c 140 OH"I. 44F. HO A.- A A'- A- F.9 . . ( .t H I. .I

I M 4V4 H '

rn Z8~I~or

~§fl~00 00 00 00 00-04



.0 -0. -6

r~ 7

c474444 I 10 I- I

04 4 *.. 0 10 0

0 SO I -lk w I q

lz I cl4 ~ ~ .

M 1-~04 I ý E--.

0.

C4 'a 'a
ow *0 4.C H 1419

0 40 m 00.

0~ 1. a wI f E Z

04 0 0 W-

0 0 0 -

04 4 0 W - E.

4 4 0 te 0 10 10 --000 11 10 1.. -00-
04 t or 0 0me'400*
0 4 4 0 1- 0 1- -4-- .4:
14 4 .0..) 1) 1
0 4 0 0 0 0 0

r C; 2,; 2, 4. 11 0 0

A.4 4,~ 0 . 0
04444 000e 0 0 -

444 0444. 00
0. Q

00

000

0 0-30



N .. 9 &

m 0

I I 0 0

In .1 0m 114- I o -P9 0n 6

00' I %.c -r.N- 04 N
r I 0mH 0 0 4044 04404

I o0 0 4N I~' 4 0 0W
f 0 o r4 0 o0 m 4 * 1 4 . .+ E4

N 0 o 'm N 0l
6I U . (40 D0 N 4 ' - - I W O

Q of r OlIN 2 :1 r11 ("-N I0HO0N0. -.. 0 0
I 0 I 44000 o o.' '-H'4004

r 4 c44 00 01. Wo4 . .. mN "'0"c 0 o QN'0 V 00 N +6. 0 'IN 00. 0

W Id I d o04 1 o.w " o0> 0u
m '0 4I 001 0- "i NI a"4 u a

Io~ 0 I 0-.4 0" 0 0 NO 4N .
Io- -N o W~l4 0a4 1 I40 O .

N 44'4'0 ON 0 0) 0u 44 N-I0

E- I I I 04 0 0 044 -. 4 (4 N .- 0 a
O~~~~~l~ 0o 4 1- 1 I 00 ' O 04-4

01~ o -'0 -N- 0. 0 N- ND 04 N4 4
0.1~ ~ ~ o 0- 44 u" - '4 0N 1 . O .

OI ~ ~w (D .00I 04m 4 0 N - N ' N N

o4 .0 14. 10 N'0 -Io. o
.

.
0o Io -'' '0 I 0 01 -O-N140

o m.0-0 0 0 ON uu1u

m4 4; 0D 0 0'0

O c N Id v m

00 14 14 14 *

m Ij
14 (40 N N0 0 AC

I wo ' N I
4 1D 0 10 -4 0 >I ~ ~~~~~ V 44 a~04 -( 0.. - 1 '

I ~ ~ ~ ~ .I .041 1o 1 0
I ~ ~~~ I4 m . - M 01 0

I I *N'0 >.14 N~l 14 1

I I 0 NO

I I 0&~'00 I'. C4'40



"4 0"0

AC. 0. 0. a65d 4

I-. -0. -l0i~ U 46 A~ VS4 a 0 6 ~ 40.I
a4- W41 a4 'Aa.4

A0 a 
00 l 60."a.-c~ 56-. .4- .4ga5 t2

0~~ 10) 1404 010 ~

14~~ 061
14. 03 a-.o U. *I

06- VI 04

a.. AU g 0'. 1 6

vo 0-43 .56 6" O 41 " " 0-1 'o..

>0 -I.1 ". k4 Q 0 "4

A E'0 . . A.I .I I 11 M . 1 1 -

~~~~~~~~- W~ .A 1 ~ 6".141 0 * 14~ I Cc
005 160 >. E SO A 0&~ O4.I o

.51.4 1 5 . .. a s S I 1 ~ .Q41 ~ . 1

>1 - 4
*a*50.56 -'* .5 , I. 6 6

r11 .- t cm

11111 011 a

OSS
63

0(

.5 0 0 ..- 0

.4 6 60 I 4 4. 004 0- 01 -

0a -0 0 0 > 0466 0 0 4

ot 145 .54 "4.
me ~ ad .24 0 00-. 0-c- 0 - - 00

IM 16 -g 0,... k I 00 0.40 .20 .40, ' '

-0 SI 9- 0544041 *1.40 i4.-I 44 g.- _d 44 .414.4.-
11 4 011 g~ o a *05.4 "46 145 4.14 W1.

05 0 6.4 " 1 6 146 0 r0Q 11l 1.. 41 "4 1

a0 r44 014 I 1t 4 0.4.4 a46 5 0 a. . . 0. 0->~Q

2-1 1 :1 .01 . a; 14 -~..-~- . 10. lg

146 I~~o 0 0.6 I- OS
0. 9-9 "4 ,54~ -4 -14 -1 I. .. 5"4

'02 6 I 03 0M- A
.4~ ~It 6 - ; : 6 .-. 44 "a0 DI00 0 .1

664 14 aI. ~ - 5
I ~ ~ ~ 0 ~~- Ap*.1444 " 0 "

oi6 01 0100 W "

14 -2 C-4 I

*0

.44 0

M m4

.0 Uo. t t

0 0

0.*

-d u 0)'

00 m$4ýM-
F4... .44."H .." I4-. Co- 0.I

Z0 00 00 m II 0u

$4 oo O A ý.M? 0 'C 0 0DA t 14 $ A4$ k
.- 44.00 -44. .4M .H4$0.$4

m 440 444 00, 00 r444 0 . n mM4$ r. :z4 F1 0 "0"

0. 0 0 ~.. 0 O~ 0 O ~ .~0-4.4 ld
0- "I 0 a

U~~~ .010~ I ~ 4 $ 4 I 1.44

3.44 0.. .r- 0 (.2 (. 0 (.3 MrC iv40 44
0 004 ? 00. 0V 0 4. 0 H

4440 4.4V 440 4.4V $ -4$ 4 44V $ ZO -H 00.4-4
4 ~ ~ ~ ~ ~ ~ ~ ' El4l)$4 0I0-0440 (.

r 00 U4 00 a44 4$ 0 0'$ 0 14- 4$ 4$
244 to C8 L.,4 OF C5 24 ZC $04340 00 1$

:c4 000 0.4 4 00 0 0.0 - 0 0.u 0u 000 c .,a V0 0'0

0i 0

H - H .C42

Bibliography

[AdaLRM, 1983]. Department of Defense. Reference Manual For The Ada Programming Language.
ANSI/MIL-STD-1815 A. Washington: Ada Joint Program Office, Office of the Under Secretary
of Defense Research and Engineering, January 1983.

[Aldern, 1990]. Aldern, Thomas D., and others. Phase I Final Report of the Pilot's Associate Program,
Interim Report for Period November 1989-December 1990. Wright Research and Development
Center Technical Report WRDC-TR-90-7007. Marietta, GA: Lockheed Aeronautical Systems
Company, December 1990. (Limited Distribution - Distribution authorized to DoD and DoD
contractors only).

[Aldern, 1991]. Aldem, Thomas D., and others. Phase 2 Interim Report of the Pilot's Associate Program,
Interim Report for Period November 1989-December 1990. Wright Laboratories Technical Report
WL-TR-91-7007. Marietta, GA: Lockheed Aeronautical Systems Company, October 1991.
(Limited Distribution - Distribution authorized to DoD and DoD contractors only).

[Allen, 1990]. Allen, Arnold 0. Probability, Statistics, and Queueing Theory with Computer Science
Applications (Second Edition). San Diego, CA: Academic Press Inc., 1990.

[ARTIE, 1989]. Boeing Military Airplanes. Ada Real-Time Inferene Engine (ARTIE) User's Guide.
Version 1.1. Witchita, K : Avionics Technology, March 1989.

[Banks, 1991]. Banks, Sheila M., Lizza, Carl S., and Whelan, Michael A. "Pilot's Associate: Evolution of a
Functional Prototype," AGARD Conference Proceedings Machine Intelligence for Aerospace
Electronic Systems. pp. 16-1 thru 16-12. 7 Rue Ancelle 92200, Neuilly sur Seine, France:
Advisory Group for Aerospace Research & Development, May 1991.

[Baruah, 1991]. Baruah, S., and others. "On-line Scheduling in the Presence of Overload," Proceedings of
the 32nd Annual Symposium On Foundations of Computer Science. pp. 100-110. Los Alamitos
CA: IEEE, IEEE Computer Society Press, 1991.

[Bihari, 1989]. Bihari, Thomas E., Walliser, Thomas M.. and Patterson, Mark R. "Controlling the Adaptive
Suspension Vehicle," IEEE Computer, 22,6 : 59-95 (June 1989).

[Booch, 1983]. Booch, Grady. Software Engineering with Ada. Menlo Park, CA: The Benjamin/Cummings
Publishing Company, Inc., 1983.

[Booch, 1986]. Booch, Grady. Software Components with Ada, Structures, Tools, and Subsystems. Menlo
Park, CA: The Benjamin/Cummings Publishing Company, Inc., 1986.

[Borger, 1989]. Borger, Mark W., Klein, Mark H., and Veltre, Robert A. Real-Time Software Engineering
in Ada: Observations and Guidlines. Technical Report CMU/SEI-89-TR-22. Carnegie Mellon
University, Pittsburgh, PA: Software Engineering Institute, September 1989.

[Brassard, 1988]. Brassard, Gilles and Bratley, Paul. Algorithmics Theory & Practice, Englewood Cliffs,
NJ: Prentice Hall, 1988.

[Broger, 1989]. Broger, Mark W. and Rajkumar, Ragunathan. Implementing Priority Inheritance
Algorithms in an Ada Runtime System. Technical Report CMU/SEI-89-TR-15. Carnegie Mellon
University, Pittsburgh, PA: Software Engineering Institute, April 1989.

[ClassicAda, 1989]. Software Productivity Solutions.Classic-Ada User's Manual. 1989.

[CLIPS-Ada, 1991]. NASA. CLIPS/Ada Advanced Programming Guide. Version 4.4, Revision 1. Johnson
Space Center: Information Systems Directorate, Software Technology Branch, October 1991.

BIB-1

[CLIPSRefMan, 1991a]. NASA. CUPS Reference Manual, Volume I, Basic Programming Guide. CLIPS
Version 5.1. Johnson Space Center: Information Systems Directorate, Software Technology
Branch, September 1991.

[CLIPSRefMan, 1991b]. NASA. CUPS Reference Manual, Volume II, Advanced Programming Guide.
Version 5.1. Johnson Space Center: Information Systems Directoiate, Software Technology
Branch, September 1991.

[CLIPSRefMan, 1991c]. NASA. CUOS Reference Manual, Volume III, Utilities and Interfaces Guide.
Version 5.1. Johnson Space Center: Information Systems Directorate, Software Technology
Branch, September 1991.

[CLIPSUG, 19911. NASA. CUPS User's Guide Volume I - Rules. Version 5.1. Johnson Space Center:
Information Systems Directorate, Software Technology Branch, September 1991.

[Coffman, 1976]. Coffman, Edward G. Computer and Job-Shop Scheduling Theory. New York, NY: John
Wiley & Sons, Inc, 1976.

[Cohen, 19861. Cohen, Norman H. Ada as a Second Language. New York, NY: McGraw-Hill Book
Company, 1986.

[Cormen, 1990]. Cormen, Thomas H., Leiserson, Charles E., and Rivest, Ronald L. Introduction to
Algorithms. Cambridge, MA: The MIT Press, 1990.

[Dechter, 1991]. Dechter, Rina, Miri, Itay, and Pearl, Judea "Temporal constraint networks," Artificial
Intelligence, 49, 1-3 : 61-95 (May 1991).

[Dodhiawala, 1988]. Dodhiawala, Rajendra and Sridharan, N.S. Real-Time Impact Report (RT-1 Impact
Analysis). MCAIR SDRL 10-1. Santa Clara, CA: FMC Corporation, Central Engineering
Laboratories, September 1988.

[Dodhiawala, 1989]. Dodhiawala, Rajendra, Sridharan, N.S., Raulefs, Peter, and Pickering, Cynthia "Real-
Time Al Systems: A Definition and An Architecture," Eleventh International Joint Conference on
Artificial Intelligence. pp. 256 -261. San Miteo, CA: The International Joint Conferences on
Artificial Intelligence, Inc., Morgan Kaufmann Publishers, Inc., August 1989.

[Fanning, 1990]. Fanning, Franklin Jesse. An Evaluation of an Ada Implementation of the Rete Algorithm
for Embedded Flight Processors. MS thesis, AFIT/GEIENG/90D-70. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1990.

[Klahr, 1986]. Kalhr, Phillp and Waterman, Donald A. Expert Systems Techniques, Tools, and
Applications. Reading, MA: Addison-Wesley Publishing Company, 1986.

[Klein, 1990]. Klein, Mark H. and Ralya, Thomas. An Analysis of Input/Output Paradigms for Real-Time
Systems. Technical Report CMU/SEI-90-TR-19. Carnegie Mellon University, Pittsburgh, PA:
Software Engineering Institute, July 1990.

[Lambert, 1990]. Lambert, R.E., and others. Phase I Final Report of the Pilot's Associate Program, Final
Report for Period Febuary 1986-December 1990. Wright Laboratories Technical Report WL-TR-
91-7006. St. Louis, MO: McDonnell Aircraft CompaAy, December 1990. (Limited Distribution -
Distribution authorized to DoD and DoD contractors only).

[Lambert, 1991]. Lambert, R.E., and others. Technical Operating Report - System Design Document. Final
Report for Period August 1988-December 1990. Wright Laboratory Technical Report WL-TR-91-
7005. St. Louis, MO: McDonnell Aircraft Company, September 1991. (Limited Distribution -
Distribution authorized to DoD and DoD contractors only).

[Lamont, 1991]. Lamont, Gary B. Real-Time Scheduling of Periodic andAperiodic Tasks. February 1991,
CSCE686 Class Notes, School of Engineering, Air Force Institute of Technology (AU). Wiight-
Patterson AFB OH, February 1991.

BIB-2

[Liu, 1973]. Liu, C. L. and Layland, James W. "Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment," Journal of the Association for Computing Machinery, 20, 1 : 46-61
(January 1973).

[Liu, 1991]. Liu, Jane W.S., and others. "Algorithms for Scheduling Imprecise Computations," IEEE
Computer, 24, 5: 58-68 (May 1991).

[Lizza, 1989]. Liz7a, Carl S. "Pilot's Associate: A Perspective Demonstration 2 ," Proceeding of
Computers in Aerospace Conference.. AIAA, 1989.

[Locke, 1992]. Locke, C. Douglas- and Vogel, David RP Ada Real-Time Programming: A Seminar. March
1992, IBM F. eral Sector Division, Owego, NY 13827.

[Nii, 1989]. Nii, H. Penny. The Handbook of Artificial Intelligence, Volume IV. Reading, MA: Addison-
Wesley Publishing Company, 1989.

[O'Reilly, 1988]. O'Reilly, Cindy A. and Cromarty, Andrew S. "'Fast' is not 'Real-Time': Designing
Ettective Real-Time AI Systems," Applications of Artificial Intelligence II. pp. 249-257. SPIE,
SPIE, 1988.

[Payton, 1991]. Payton, David W. and Bihari, Thomas E. "Intelligent Real-Time Control of Robotic
Vehicles," Communications of the ACM, 34,8 : 48-63 (August 1991).

[Real-Time, 1984]. U.S. Army Communications-Electronics Command. Real-Time Ada Workbook. Fort
Monmouth, NJ: Center For Tactical Computer Systems, July 1984.

[Sawyer, 1990]. Sawyer, George Allen. Extraction and Measurement of Multi-Level Parallelism in
Production Systems. MS thesis, AFIT/GCE/ENG/90D-04. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH. December 1990.

[Scoy, 1989]. Scoy, Roger Van, Bamberger, Judy, and Firth, Robert. An Overview of DARK, Ada-Letters
(November/Dece nber 1989).

[Sha, 1989]. Sha, Lui and Goodenough, John B. Real-Time Scheduling Theory and Ada. Technical Report
CMU/SEI-89-TR-14. Carnegie Mllon University, Pittsburgh, PA: Software Engineering Institute,
April 1989.

[Sha, 1991]. Sha, Lui, Klein, Mark H., and Goodenough, John B. Rate Monotonic Analysis for Real-Time
Systcms. Technical Report CMU/SEI-91-TR-6. Carnegie Mellon University, Pittsburgh, PA:
Software Engineering Institute, March 1991.

[Shamsudin, 1991]. Shamsudin, Annie Z. and Dillion, T.S. NetManager: A Real--Time Expert System for
Network Traffic Management. Technical Report 15/91. Department of Computer Science and
Computer Engineering, La Trobe University, Bundoora, Victoria, Australia 3083: La Trobe
University, December 1991.

[Simpson, 1988]. Simpson, Robert L. "DoD Applications of Artificial Intelligence: Successes and
Prospects," Applications of Artificial Intelligence VI. . SPIE, SPIE, 1988.

[Smith, 1990]. Smith, David M. and Broadwell, Martin M. Pilot's Associate System Knowledge Base
Document, Volume 1: Tactics Planner Subsystem, CDRL Sequence No. 32,. Contract F33615-85-
C-3804. Marietta, GA: Lockheed Aeronautical Systems Company, October 1990. (Distribution
Limited '-) and DoD contractors only).

[Sprunt, 1989]. Sprunt, Brinkley, Sha, Lui, and Lehoczky, John. Scheduling Sporadic and Aperiodic
Events in a Hard Real-Time System. Technical Report CMU/SEI-89-TR-I 1. Carnegie Mellon
University, Pittsburgh, PA: Software Engineering Institute, April 1989.

[Sprunt, 1990]. Sprunt, Brinkley and Sha, l[ui. Implementing Sporadic Servers in Ada. Technical Report
CMU/SEI-90-TR-6. Carnegie Mellon University, Pittsburgh, PA: Software Fngineering Institute,
May 1990.

BIB-3

[Stankovic, 1988]. Stankovic, John A. and Ramamritham, Krithi, Tutorial Hard Real-Time Systems, IEEE
Catolog Number EH0276-6, Computer Society Press Order Number 81, February 1988.

[Stockman, 1988]. Stockman, Steven P. "ABLE: An Ada--Based Blackboard System," Proceedings of
AIDA-88, Fourth International Conference on Artificial Intelligence and Ada. George Mason
University, George Mason University, 1988.

[Tindell, 1992]. Tindell, Ken, Bums, Alan, and Wellings, Andy, Allocating Hard Real Time Tasks (An
NP-Hard Problem Made Easy), e-mail via ftp, 1992, Real Time Systems Research Group,
Department of Computer Science, University of York, England.

[VERDIX, 1990]. VERDIX Corporation. VADS Veridx Ada Development System Version 6.0. Sun-4 Sun
OS. August 1990.

[Whelan, 1990]. Whelan, Michael A. and Rouse, Doug Pilot's Associate: Approaching Maturity. In
Seventh Annual Workshop on Command and Control Decision Aiding. Air Force Institute of
Technology, Valusek, J. R. and Duffy, LorRaine, Ch. 3, Air Force Institute of Technology/ENS
Wright-Patterson AFB, Ohio 45433-6583, Distribution Limited to DoD and DoD contractors only,
April 1990.

[Wilber, 1989]. Wilber, George F. "Intelligent Real-Tim, 3mbedded Systems," Proceedings of AIDA-89,
Fifth International Conference on Artificial Inteitligence and Ada. pp. 74-82. Washington D.C.:
Department of Computer Science, George Mason University and The Institute for Defense
Analyses, George Mason University, November 1989.

[Wilensky, 1983]. Wilensky, Robert Planning and Understanding A Computational Approach to Human
Reasoning. Reading, MA: Addison-Wesley Publishing Company, 1983.

[Wood, 1989]. Wood, William G. Temporal Logic Case Study. Technical Report CMU/SEI-89-TR-24.
Carnegie Mellon University, Pittsburgh, PA: Software Engineering Institute, August 1989.

BIB-4

Vita

Captain Michael A. Whelan was born to Dr. William J. Whelan and Barbara A. Whelan on July 25,

1958. He enlisted in the United States Air Force on February 22, 1977 as an Aircraft Armament Systems

Specialist. Captain Whelan served enlisted tours at Lowry AFB, Colorado; Cannon AFB, New Mexico;

RAF Upper Heyford, United Kingdom; and Moody AFB, Georgia. His enlisted positions included

Weapons Load Crew Chief, Shift Supervisor, and Weapons Controller in Maintenance Control. Captain

Whelan obtained the enlisted rank of Technical Sergeant before entering into the Airman Education and

Commissioning program in May of 1985. After graduating with honors from New Mexico State

University, Captain Whelan attended Officer Training School and was commissioned as a Second

Lieutenant on April 13, 1988. His first officer assignment was to the Cockpit Integration Directorate,

Wright Laboratories, Wright-Patterson AFB, Ohio, where he served as the project engineer for the Pilot's

Associate program from June 1988 until June 1990. Captain Whelan was then assigned as the Chief

Engineer for Multi-Role Cockpit program. In May 1991, Captain Whelan was accepted into the graduate

computer engineering program at the Air Force Institute of Technology. Captain Whelan is slated to fill a

Command Directed Educational Requirement (CDERs) slot at Wright-Patterson AFB after graduating.

Permanent Address: 6370 Copper Pheasant Drive
Dayton, Ohio 45424-4100
(513) 237-9502

V1TA-I

P R[PORT O0CUMENVATION PAGE

1 ;A,3Pq-,(Y li$ý ONI.L' 7... , .. • • L'~ T ,:" - RFP',)kT TYPi AN)DArCS COVr R ED

December 1992 Master's Thesis

AN INTELLIGENT REAL-TIME SYSTEM
ARCHITECTURE IMPLEMENTED IN ADA

Michael A. Whelan, Capt., USAF
1

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCE/ENG/92D-12

A C, N .Y P•Pri C ". -' _R

Major Carl Lizza
WL/IPA
WPAFB, OH 45433-6553

Approved for public release; distribution unlimited

Conventional real-time systems are fully deterministic allowing for off-line, optimal, task
scheduling under all circumstances. Real-time intelligent systems add non-deterministic task
execution times and non-deterministic task sets for scheduling purposes. Non-deterministic task
sets force intelligent real-time systems to trade-off execution time with solution quality during
run-time and perform dynamic task scheduling. Four basic design considerations addressing those
tradeoffs have been identified: control reasoning, focus of attention, parallelism, and algorithm
efficacy. Non-real-time intelligent systems contain an environment sensor, a model of the
environment, a reasoning process, and a large collection of procedural processes. Real-time
intelligent systems add to these a model of the real-time system's behavior, and a real-time task
scheduler. In addition, the reasoning process is augmented with a metaplanner to reason about
timing issues using the system's behavioral model. Additionally, real-time deadlines force the
inclusion of pluralistic solution methods in the intelligent system to allow multiple responses
ranging from reactive to fully reasoned and calculated. This research presents an architecture
capable of meeting real-time performance goals with on-line scheduling of tasks.

Artificial Intelligence, Real-Time, Ada, On-line Scheduling, h - .: 180 ____

Knowledge-based Systems, Expert Systems _

__ _NCLA SSIFEFD 1NCL4SSl~nD _L_ IJl ' .As -~SPTf I T

